Geometrical entropy approach for variable structure multiple-model estimation

被引:9
作者
Han, Shen-tu [1 ]
Xue Anke [1 ]
Peng Dongliang [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometrical entropy; Maneuvering target tracking; Model sequence set adaptation; Multiple-model estimation; Particle filter; OPTIMAL ADAPTIVE ESTIMATION; PARTICLE FILTERS; ALGORITHM;
D O I
10.1016/j.cja.2015.06.006
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The variable structure multiple-model (VSMM) estimation approach, one of the multiple-model (MM) estimation approaches, is popular in handling state estimation problems with mode uncertainties. In the VSMM algorithms, the model sequence set adaptation (MSA) plays a key role. The MSA methods are challenged in both theory and practice for the target modes and the real observation error distributions are usually uncertain in practice. In this paper, a geometrical entropy (GE) measure is proposed so that the MSA is achieved on the minimum geometrical entropy (MGE) principle. Consequently, the minimum geometrical entropy multiple-model (MGEMM) framework is proposed, and two suboptimal algorithms, the particle filter k-means minimum geometrical entropy multiple-model algorithm (PF-KMGEMM) as well as the particle filter adaptive minimum geometrical entropy multiple-model algorithm (PF-AMGEMM), are established for practical applications. The proposed algorithms are tested in three groups of maneuvering target tracking scenarios with mode and observation error distribution uncertainties. Numerical simulations have demonstrated that compared to several existing algorithms, the MGE-based algorithms can achieve more robust and accurate estimation results when the real observation error is inconsistent with a priori. (C) 2015 Production and hosting by Elsevier Ltd.
引用
收藏
页码:1131 / 1146
页数:16
相关论文
共 34 条
[1]  
Bar-Shalom Y., 2011, TRACKING DATA FUSION
[2]  
Bar-Shalom Yaakov., 1998, Estimation and tracking: Principles, techniques and software
[3]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[4]   Interacting multiple model particle filter [J].
Boers, Y ;
Driessen, JN .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2003, 150 (05) :344-349
[5]  
Cover Thomas M., 2006, Elements of Information Theory, V2nd
[6]   Combining the interacting multiple model method with particle filters for manoeuvring target tracking [J].
Foo, P. H. ;
Ng, G. W. .
IET RADAR SONAR AND NAVIGATION, 2011, 5 (03) :234-255
[7]  
Gadsden S. A., 2010, P 2010 13 INT C INF, P1, DOI 10.1109/ICIF.2010.5712021
[8]   Particle filters for positioning, navigation, and tracking [J].
Gustafsson, F ;
Gunnarsson, F ;
Bergman, N ;
Forssell, U ;
Jansson, J ;
Karlsson, R ;
Nordlund, PJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :425-437
[9]   Universal geometric approach to uncertainty, entropy, and information [J].
Hall, MJW .
PHYSICAL REVIEW A, 1999, 59 (04) :2602-2615
[10]  
Hayashi Y, 2006, INT JOINT C SICE ICA, P2812