Resonances for Perturbed Periodic Schrodinger Operator

被引:0
作者
Dimassi, Mouez [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
PERTURBATIONS; DYNAMICS;
D O I
10.1155/2012/309398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the semiclassical regime, we obtain a lower bound for the counting function of resonances corresponding to the perturbed periodic Schrodinger operator P(h) = -Delta + V(x) + W(hx). Here V is a periodic potential, W a decreasing perturbation and h a small positive constant.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Quasi-periodic solutions of Schrodinger equations with quasi-periodic forcing in higher dimensional spaces [J].
Zhang, Min ;
Rui, Jie .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07) :3670-3693
[42]   Existence of Kink Waves and Periodic Waves for a Perturbed Defocusing mKdV Equation [J].
Chen, Aiyong ;
Guo, Lina ;
Huang, Wentao .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (03) :495-517
[43]   Existence of solitary waves and periodic waves for a perturbed generalized BBM equation [J].
Chen, Aiyong ;
Guo, Lina ;
Deng, Xijun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5324-5349
[44]   THE PERTURBED ADJOINT OPERATOR DEVELOPED FOR FILTERING THE SUPPLY SYSTEMS WITH STOCHASTIC DELAY IN CONTROL [J].
Bogataj, Ludvik ;
Bogataj, Marija .
PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH SOR 09, 2009, :249-+
[45]   Particular periodic solutions to a nonintegrable system of Schrodinger nonlinear equations and their eigenvalues [J].
Makarov, V. A. ;
Petnikova, V. M. ;
Potravkin, N. N. ;
Shuvalov, V. V. .
PHYSICS OF WAVE PHENOMENA, 2013, 21 (04) :264-269
[46]   Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrodinger equation [J].
Deng, Guo ;
Li, Sitai ;
Biondini, Gino ;
Trillo, Stefano .
PHYSICAL REVIEW E, 2017, 96 (05)
[47]   Ballistic transport for limit-periodic Schrodinger operators in one dimension [J].
Young, Giorgio .
JOURNAL OF SPECTRAL THEORY, 2023, 13 (02) :451-489
[48]   IRREDUCIBILITY OF THE FERMI VARIETY FOR DISCRETE PERIODIC SCHRODINGER OPERATORS AND EMBEDDED EIGENVALUES [J].
Liu, Wencai .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (01) :1-30
[49]   Quasi-periodic solutions with prescribed frequency in a nonlinear Schrodinger equation [J].
Ren Xiu-Fang .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) :3067-3084
[50]   Observation of doubly periodic solutions of the nonlinear Schrodinger equation in optical fibers [J].
Vanderhaegen, Guillaume ;
Szriftgiser, Pascal ;
Naveau, Corentin ;
Kudlinski, Alexandre ;
Conforti, Matteo ;
Trillo, Stefano ;
Akhmediev, Nail ;
Mussot, Arnaud .
OPTICS LETTERS, 2020, 45 (13) :3757-3760