Resonances for Perturbed Periodic Schrodinger Operator

被引:0
作者
Dimassi, Mouez [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
PERTURBATIONS; DYNAMICS;
D O I
10.1155/2012/309398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the semiclassical regime, we obtain a lower bound for the counting function of resonances corresponding to the perturbed periodic Schrodinger operator P(h) = -Delta + V(x) + W(hx). Here V is a periodic potential, W a decreasing perturbation and h a small positive constant.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Periodic solutions of time-dependent perturbed Hamiltonian systems [J].
Alberti, Angelo ;
Vidal, Claudio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (02)
[32]   Quasi-periodic solutions of two dimensional SchrOdinger equations with Quasi-periodic forcing' [J].
Zhang, Min .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 135 :1-34
[33]   Eigenvalue variations of the Neumann Laplace operator due to perturbed boundary conditions [J].
Nursultanov, Medet ;
Trad, William ;
Tzou, Justin ;
Tzou, Leo .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2025, 12 (01)
[34]   Quasi-Periodic Solutions for the Reversible Derivative Nonlinear Schrodinger Equations with Periodic Boundary Conditions [J].
Lou, Zhaowei ;
Si, Jianguo .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (03) :1031-1069
[35]   Spatial Near-Elliptical Symmetric Periodic Orbits of Perturbed Kepler Problems: From Existence to Stability [J].
Alberti, Angelo ;
Vidal, Claudio .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01) :782-814
[36]   Quasi-periodic solutions of a fractional nonlinear Schrodinger equation [J].
Li, Jing .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
[37]   Ballistic transport for Schrodinger operators with quasi-periodic potentials [J].
Karpeshina, Yulia ;
Parnovski, Leonid ;
Shterenberg, Roman .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
[38]   MAGNETIC SCHRODINGER OPERATOR: GEOMETRY, CLASSICAL AND QUANTUM DYNAMICS AND SPECTRAL ASYMPTOTICS [J].
Ivrii, Victor .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (03) :461-479
[39]   Semi-classical Asymptotics for the Schrodinger Operator with Oscillating Decaying Potential [J].
Dimassi, Mouez .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04) :734-747
[40]   Nontrivial Attractors of the Perturbed Nonlinear Schrodinger Equation: Applications to Associative Memory and Pattern Recognition [J].
Cherny, Valentin V. ;
Byrnes, Tim ;
Pyrkov, Alexey N. .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (7-8)