Resonances for Perturbed Periodic Schrodinger Operator

被引:0
作者
Dimassi, Mouez [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
PERTURBATIONS; DYNAMICS;
D O I
10.1155/2012/309398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the semiclassical regime, we obtain a lower bound for the counting function of resonances corresponding to the perturbed periodic Schrodinger operator P(h) = -Delta + V(x) + W(hx). Here V is a periodic potential, W a decreasing perturbation and h a small positive constant.
引用
收藏
页数:12
相关论文
共 50 条
[21]   On the singular Weyl-Titchmarsh function of perturbed spherical Schrodinger operators [J].
Kostenko, Aleksey ;
Teschl, Gerald .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (09) :3701-3739
[22]   Metastable Periodic Patterns in Singularly Perturbed Delayed Equations [J].
Grotta-Ragazzo, C. ;
Malta, Coraci Pereira ;
Pakdaman, K. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (02) :203-252
[23]   A Regularized Trace Formula for a Well-Perturbed Laplace Operator [J].
Kanguzhin, B. E. ;
Tokmagambetov, N. E. .
DOKLADY MATHEMATICS, 2015, 91 (01) :1-4
[24]   Spectral Series of the Schrodinger Operator in a Thin Waveguide with a Periodic Structure. 2. Closed Three-Dimensional Waveguide in a Magnetic Field [J].
Bruening, J. ;
Dobrokhotov, S. Yu. ;
Sekerzh-Zen'kovich, S. Ya. ;
Tudorovskiy, T. Ya. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2011, 18 (01) :33-53
[25]   Topics on Fermi varieties of discrete periodic Schrodinger operators [J].
Liu, Wencai .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
[26]   A Deep Learning Method for Computing Eigenvalues of the Fractional Schrodinger Operator [J].
Guo Yixiao ;
Ming Pingbing .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (02) :391-412
[27]   Spectral asymptotics for the Schrodinger operator with a non-decaying potential [J].
Dimassi, Mouez ;
Fujiie, Setsuro .
ASYMPTOTIC ANALYSIS, 2022, 130 (3-4) :335-365
[28]   SMOOTH QUASI-PERIODIC SOLUTIONS FOR THE PERTURBED MKDV EQUATION [J].
Xu, Siqi ;
Yan, Dongfeng .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) :1857-1869
[29]   Investigation of periodic characteristics of perturbed flow over a slender body [J].
Zhao, Li ;
Wang, Yankui ;
Qi, Zhongyang .
HELIYON, 2023, 9 (05)
[30]   Periodic solutions of time-dependent perturbed Hamiltonian systems [J].
Alberti, Angelo ;
Vidal, Claudio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (02)