ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS

被引:0
作者
Antontsev, Stanislav [1 ]
Chipot, Michel [2 ]
机构
[1] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
[2] Univ Zurich, Inst Math, Abt Angew Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study uniqueness of weak solutions for elliptic equations of the following type -partial derivative(xi) (a(i)(x, u) vertical bar partial derivative(xi) u vertical bar(pi-2) partial derivative(xi) u) = f(x), in a bounded domain Omega subset of R-n with Lipschitz continuous boundary Gamma = partial derivative Omega. We consider in particular mixed boundary conditions, i.e., Dirichlet condition on one part of the boundary and Neumann condition on the other part. We study also uniqueness of weak solutions for the parabolic equations {partial derivative(t)u = partial derivative(xi) (a(i)(x, t, u) vertical bar partial derivative(xi) u vertical bar(pi-2) partial derivative(xi) u) + f in Omega x (0. T), u = 0 on Gamma x (0, T) = partial derivative Omega x (0, T), u(x, 0) = u(0) x is an element of Omega. It is assumed that the constant exponents pi satisfy 1 < p(i) < infinity and the coefficients a(i) are such that 0 < lambda <= lambda(i) <= a(i)(x, u) < infinity, for all i, a.e. x is an element of Omega, (a.e. t is an element of (0, T)), for all u is an element of R. We indicate also conditions which guarantee existence of solutions.
引用
收藏
页码:401 / 419
页数:19
相关论文
共 25 条
[1]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[2]  
ANTONTSEV S, 2007, ADV MATH SCI APPL, V17, P287
[3]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[4]   Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions [J].
Antontsev, Stanislav ;
Shmarev, Sergei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :728-761
[5]   FINITE-ELEMENT APPROXIMATION OF THE PARABOLIC P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :413-428
[6]   Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data [J].
Bendahmane, M ;
Karlsen, K .
POTENTIAL ANALYSIS, 2005, 22 (03) :207-227
[7]   Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations [J].
Bendahmane, M ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) :405-422
[8]   On some anisotropic reaction-diffusion systems with L1-data modeling an epidemic the propagation of disease [J].
Bendahmane, M ;
Langlais, M ;
Saad, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :617-636
[9]  
Bendahmane M, 2005, CONTEMP MATH, V371, P1
[10]  
BENDAHMANE M., 2006, Elect. J. of Diff., Equa, V2006, P1