Transport through a quantum spin Hall quantum dot

被引:39
作者
Timm, Carsten [1 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 15期
关键词
TOPOLOGICAL INSULATORS; SUPERCONDUCTORS; WELLS;
D O I
10.1103/PhysRevB.86.155456
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum spin Hall insulators, recently realized in HgTe/(Hg,Cd)Te quantum wells, support topologically protected, linearly dispersing edge states with spin-momentum locking. A local magnetic exchange field can open a gap for the edge states. A quantum-dot structure consisting of two such magnetic tunneling barriers is proposed, and the charge transport through this device is analyzed. The effects of the bias voltage, the gate voltage, and the charging energy in the quantum dot are studied employing Landauer and master-equation approaches. For vanishing charging energy, the differential conductance is periodic in both gate and bias voltages. For nonzero charging energy, the periodicity in the gate voltage is retained, but with increased period. A partial recurrence of the noninteracting periodicities is found for strong interactions. The possibility of controlling the edge magnetization by a locally applied gate voltage is proposed.
引用
收藏
页数:6
相关论文
共 32 条
[11]   Quantum spin hall insulator state in HgTe quantum wells [J].
Koenig, Markus ;
Wiedmann, Steffen ;
Bruene, Christoph ;
Roth, Andreas ;
Buhmann, Hartmut ;
Molenkamp, Laurens W. ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
SCIENCE, 2007, 318 (5851) :766-770
[12]   The quantum spin Hall effect:: Theory and experiment [J].
Koenig, Markus ;
Buhmann, Hartmut ;
Molenkamp, Laurens W. ;
Hughes, Taylor ;
Liu, Chao-Xing ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (03)
[13]   Density-operator approaches to transport through interacting quantum dots: Simplifications in fourth-order perturbation theory [J].
Koller, S. ;
Grifoni, M. ;
Leijnse, M. ;
Wegewijs, M. R. .
PHYSICAL REVIEW B, 2010, 82 (23)
[14]   ELECTRICAL RESISTANCE OF DISORDERED ONE-DIMENSIONAL LATTICES [J].
LANDAUER, R .
PHILOSOPHICAL MAGAZINE, 1970, 21 (172) :863-&
[15]   Quantum dot in a two-dimensional topological insulator: The two-channel Kondo fixed point [J].
Law, K. T. ;
Seng, C. Y. ;
Lee, Patrick A. ;
Ng, T. K. .
PHYSICAL REVIEW B, 2010, 81 (04)
[16]   Kinetic equations for transport through single-molecule transistors [J].
Leijnse, M. ;
Wegewijs, M. R. .
PHYSICAL REVIEW B, 2008, 78 (23)
[17]   Correlation effects on resonant tunneling in one-dimensional quantum wires -: art. no. 041302 [J].
Meden, V ;
Enss, T ;
Andergassen, S ;
Metzner, W ;
Schönhammer, K .
PHYSICAL REVIEW B, 2005, 71 (04)
[18]   Spin-Hall insulator [J].
Murakami, S ;
Nagaosa, N ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2004, 93 (15) :156804-1
[19]   Tunneling through nanosystems: Combining broadening with many-particle states [J].
Pedersen, JN ;
Wacker, A .
PHYSICAL REVIEW B, 2005, 72 (19)
[20]   Topological insulators and superconductors [J].
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04)