Large-depth-of-field optical-resolution colorectal photoacoustic endoscope

被引:25
作者
Li, Xiaowan [1 ,2 ,3 ]
Xiong, Kedi [1 ,2 ,3 ]
Yang, Sihua [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Key Lab Laser Life Sci, MOE, Guangzhou 510631, Guangdong, Peoples R China
[2] South China Normal Univ, Inst Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] South China Normal Univ, Coll Biophoton, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BESSEL BEAM; MICROSCOPY;
D O I
10.1063/1.5093789
中图分类号
O59 [应用物理学];
学科分类号
摘要
Defocus scanning, which causes a serious deterioration of the transverse resolution out of the focal zone, is a big obstacle to the application of optical-resolution photoacoustic (PA) endoscopy (OR-PAE) in imaging internal hollow organs. However, the current solution to generate an adjustable focal length is inapplicable for in vivo imaging due to the greatly increased scanning time. In this study, by applying an elongated focus lens that produces Bessel beams to the OR-PAE, we developed a large-depth-of-field optical-resolution PA endoscope with a depth of focus of similar to 8.6 mm in air, which can image targets at different depths without axial scanning, while maintaining a relatively constant transverse resolution. Ex vivo experimental results demonstrate the advantage of the endoscope to image biological tissues at different depths. Furthermore, an in vivo experiment presents three-dimensional vascular networks in the rabbit rectum, suggesting the potential of the endoscope for colorectal clinical applications. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 37 条
[1]   Intensity distribution around the focal regions of real axicons [J].
Akturk, Selcuk ;
Zhou, Bing ;
Pasquiou, Benjamin ;
Franco, Michel ;
Mysyrowicz, Andre .
OPTICS COMMUNICATIONS, 2008, 281 (17) :4240-4244
[2]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[3]   Synthetic aperture focusing technique for photoacoustic endoscopy [J].
Cai, De ;
Li, Guangyao ;
Xia, Dongqing ;
Li, Zhongfei ;
Guo, Zhendong ;
Chen, Sung-Liang .
OPTICS EXPRESS, 2017, 25 (17) :20162-20171
[4]   Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications [J].
Dong, Biqin ;
Chen, Siyu ;
Zhang, Zhen ;
Sun, Cheng ;
Zhang, Hao F. .
OPTICS LETTERS, 2014, 39 (15) :4372-4375
[5]   Aberration-controlled Bessel beam processing of glass [J].
Dudutis, Juozas ;
Stonys, Rokas ;
Raciukaitis, Gediminas ;
Gecys, Paulius .
OPTICS EXPRESS, 2018, 26 (03) :3627-3637
[6]   Non-ideal axicon-generated Bessel beam application for intra-volume glass modification [J].
Dudutis, Juozas ;
Gecys, Paulius ;
Raciukaitis, Gediminas .
OPTICS EXPRESS, 2016, 24 (25) :28433-28443
[7]   Photoacoustic endomicroscopy based on a MEMS scanning mirror [J].
Guo, Heng ;
Song, Chaolong ;
Xie, Huikai ;
Xi, Lei .
OPTICS LETTERS, 2017, 42 (22) :4615-4618
[8]   Label-free in vivo fiber-based optical-resolution photoacoustic microscopy [J].
Hajireza, P. ;
Shi, W. ;
Zemp, R. J. .
OPTICS LETTERS, 2011, 36 (20) :4107-4109
[9]   Optical resolution photoacoustic microendoscopy with ultrasound-guided insertion and array system detection [J].
Hajireza, Parsin ;
Harrison, Tyler ;
Forbrich, Alexander ;
Zemp, Roger .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (09)
[10]   Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy [J].
Hajireza, Parsin ;
Shi, Wei ;
Zemp, Roger .
LASER PHYSICS LETTERS, 2013, 10 (05)