Tunable optical nonlinearity of Au-TiO2 nanocomposites

被引:4
作者
Kumar, Avesh [1 ,2 ]
Singh, R. P. [2 ]
Mohanty, T. [3 ]
Taneja, Ajay [1 ]
机构
[1] Dr BR Ambedkar Univ, Dept Chem, Agra 282002, Uttar Pradesh, India
[2] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[3] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
关键词
Nanocomposites; Surface plasmon resonance; Work function; Z-scan technique; Optical nonlinearity; SURFACE-PLASMON RESONANCE; GOLD NANOPARTICLES; Z-SCAN; AG NANOPARTICLES; ENHANCEMENT; ELECTRON; TIO2; ANATASE; RUTILE; AU;
D O I
10.1016/j.photonics.2018.11.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work is focused on the correlation studies of Fermi energy level and optical nonlinearity of Au-TiO2 nanocomposites. The Fermi energy and optical nonlinearity arc found to be nearly proportionally related with respect to concentration of Au. The observed shift in Fermi level with increasing concentration of Au is due to charge transfer between TiO2 and Au in the presence of ultraviolet light irradiation during the formation of Au-TiO2 nanocomposites. The estimated third order optical nonlinearity was found to increase from 3.80 x 10(-6) to 9.69 x 10(-6) esu with increase in Au concentrations from 0 to 1.0 x 10(-2) M. This observed increment in nonlinearity is due to the enhancement of local electric field created by excitation of surface plasmon resonance that affects the Fermi energy level or work function.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 48 条
[1]   Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain [J].
Anija, M ;
Thomas, J ;
Singh, N ;
Nair, AS ;
Tom, RT ;
Pradeep, T ;
Philip, R .
CHEMICAL PHYSICS LETTERS, 2003, 380 (1-2) :223-229
[2]   The third-order nonlinear optical susceptibility of gold [J].
Boyd, Robert W. ;
Shi, Zhimin ;
De Leon, Israel .
OPTICS COMMUNICATIONS, 2014, 326 :74-79
[3]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[4]   Study on Z-scan characteristics for a large nonlinear phase shift [J].
Chen, SQ ;
Liu, ZB ;
Zang, WP ;
Tian, JG ;
Zhou, WY ;
Song, F ;
Zhang, CP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (09) :1911-1916
[5]   Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response [J].
Conforti, Matteo ;
Della Valle, Giuseppe .
PHYSICAL REVIEW B, 2012, 85 (24)
[6]   Energy States of Ligand Capped Ag Nanoparticles: Relating Surface Plasmon Resonance to Work Function [J].
Dadlani, Anup L. ;
Schindler, Peter ;
Logar, Manca ;
Walch, Steve P. ;
Prinz, Fritz B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (43) :24827-24832
[7]   Linear and nonlinear optical properties of simple oxides .2. [J].
Dimitrov, V ;
Sakka, S .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) :1741-1745
[8]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[9]   Z-scan determination of the third-order optical nonlinearity of a triphenylmethane dye using 633 nm He-Ne laser [J].
Geethakrishnan, T. ;
Palanisamy, P. K. .
OPTICS COMMUNICATIONS, 2007, 270 (02) :424-428
[10]   Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings [J].
Genevet, Patrice ;
Tetienne, Jean-Philippe ;
Gatzogiannis, Evangelos ;
Blanchard, Romain ;
Kats, Mikhail A. ;
Scully, Marlan O. ;
Capasso, Federico .
NANO LETTERS, 2010, 10 (12) :4880-4883