An adaptive meshless local Petrov-Galerkin method based on a posteriori error estimation for the boundary layer problems

被引:31
|
作者
Kamranian, Maryam [1 ]
Dehghan, Mehdi [1 ]
Tatari, Mehdi [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran, Iran
[2] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Meshless methods; Adaptive MLS approximation; MLPG method; Adaptive MLPG method; Boundary layer problems; A posteriori error estimation; TRANSIENT HEAT-CONDUCTION; MLPG METHOD; APPROXIMATION; COLLOCATION; INTERPOLATION;
D O I
10.1016/j.apnum.2016.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new adaptive moving least squares (MLS) method with variable radius of influence is presented to improve the accuracy of Meshless Local Petrov-Galerkin (MLPG) methods and to minimize the computational cost for the numerical solution of singularly perturbed boundary value problems. An error indicator based on a posteriori error estimation, accurately captures the regions of the domain with insufficient resolution and adaptively determines the new nodes location. The effectiveness of the new method is demonstrated on some singularly perturbed problems involving boundary layers. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [1] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [2] A meshless local Petrov-Galerkin scaled boundary method
    A. J. Deeks
    C. E. Augarde
    Computational Mechanics, 2005, 36 : 159 - 170
  • [3] An adaptive analysis of the ship structures based on meshless local petrov-galerkin method
    School of Ship Engineering, Guangzhou Maritime Institute, Guangzhou, China
    不详
    J. Inf. Comput. Sci., 9 (3464-3474): : 3464 - 3474
  • [4] The complex variable meshless local Petrov-Galerkin method for elastodynamic problems
    Dai, Baodong
    Wang, Qifang
    Zhang, Weiwei
    Wang, Linghui
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 311 - 321
  • [5] An improved impermeable solid boundary scheme for Meshless Local Petrov-Galerkin method
    Pan, Xinglin
    Zhou, Yan
    Dong, Ping
    Shi, Huabin
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2022, 95 : 94 - 105
  • [6] A Modified Meshless Local Petrov-Galerkin Applied to Electromagnetic Axisymmetric Problems
    Soares, Ramon D.
    Moreira, Fernando J. S.
    Mesquita, Renato C.
    Lowther, David A.
    Lima, Naisses Z.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 513 - 516
  • [7] Mixed meshless local Petrov-Galerkin collocation method for modeling of material discontinuity
    Jalusic, Boris
    Soric, Jurica
    Jarak, Tomislav
    COMPUTATIONAL MECHANICS, 2017, 59 (01) : 1 - 19
  • [8] A meshless local Petrov-Galerkin method for solving the neutron diffusion equation
    Tayefi, Shima
    Pazirandeh, Ali
    Saadi, Mohsen Kheradmand
    NUCLEAR SCIENCE AND TECHNIQUES, 2018, 29 (11)
  • [9] A coupled finite element and meshless local Petrov-Galerkin method for large deformation problems
    Li, Di
    Lu, Zhiyong
    Kang, Wenqian
    MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 3777 - 3780
  • [10] Arbitrary placement of secondary nodes, and error control, in the meshless local Petrov-Galerkin (MLPG) method
    Kim, HG
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (03): : 11 - 32