共 12 条
Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation
被引:40
作者:
Xiang, Song
[1
]
Wang, Ke-ming
[1
]
Ai, Yan-ting
[1
]
Sha, Yun-dong
[1
]
Shi, Hong
[1
]
机构:
[1] Shenyang Aerosp Univ, Sch Engine & Energy Engn, Shenyang 110136, Peoples R China
关键词:
Trigonometric variable shape parameter;
Generalized multiquadric;
Radial basis function;
Interpolation;
Linear boundary value problem;
PARTIAL-DIFFERENTIAL-EQUATIONS;
COMPUTATIONAL FLUID-DYNAMICS;
INTERPOLATION;
SCHEME;
D O I:
10.1016/j.apm.2011.07.076
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The generalized multiquadric radial basis function (phi(j) = [(x - x(j))(2) + c(2)](beta)) has the exponent beta and shape parameter c that play an important role in the accuracy of he approximation. In this study, we present a trigonometric variable shape parameter and exponent strategy and apply it to function interpolations and linear boundary value problems. Several numerical experiments with the uniformly spaced nodes show that the inverse multiquadric radial basis function (beta = -0.5) with the trigonometric variable shape parameter c strategy results in the best accuracy for the one-dimensional interpolations; the trigonometric variable shape parameters and exponent strategy produces the best accuracy for the two-dimensional interpolations and linear boundary value problems. For the non-uniformly spaced nodes, the random variable shape parameter c and exponent beta strategy produces the best accuracy for the two-dimensional boundary value problem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1931 / 1938
页数:8
相关论文