Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis

被引:94
作者
Seijkens, Tom [1 ]
Hoeksema, Marten A. [1 ]
Beckers, Linda [1 ]
Smeets, Esther [1 ]
Meiler, Svenja [1 ]
Levels, Johannes [2 ]
Tjwa, Marc [3 ]
de Winther, Menno P. J. [1 ]
Lutgens, Esther [1 ,4 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Dept Med Biochem, NL-1105 CZ Amsterdam, Netherlands
[2] Univ Amsterdam, Acad Med Ctr, Dept Expt Vasc Med, NL-1105 CZ Amsterdam, Netherlands
[3] Goethe Univ Frankfurt, Inst Transfus Med, Lab Vasc Hematol Angiogenesis, D-60054 Frankfurt, Germany
[4] Univ Munich, Inst Cardiovasc Prevent IPEK, Munich, Germany
关键词
lipoproteins; inflammation; PROLIFERATION; MONOCYTOSIS; DISEASE; ACCUMULATION; MAINTENANCE; INFECTION; SUBSETS; LESSONS; LESIONS; MICE;
D O I
10.1096/fj.13-243105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modulation of hematopoietic stem and progenitor cells (HSPCs) determines immune cell function. In this study, we investigated how hypercholesterolemia affects HSPC biology and atherosclerosis. Hypercholesterolemia induced loss of HSPC quiescence, characterized by increased proliferation and expression of cyclin B-1, C-1, and D-1, and a decreased expression of Rb, resulting in a 3.6- fold increase in the number of HSPCs in hypercholesterolemic Ldlr(-/-) mice. Competitive bone marrow (BM) transplantations showed that a hypercholesterolemic BM microenvironment activates HSPCs and skews their development toward myeloid lineages. Conversely, hypercholesterolemia-primed HSPCs acquired an enhanced propensity to generate myeloid cells, especially granulocytes and Ly6C(high) monocytes, even in a normocholesterolemic BM microenvironment. In conformity, macrophages differentiated from hypercholesterolemia-primed HSPCs produced 17.0% more TNF-, 21.3% more IL-6, and 10.5% more MCP1 than did their normocholesterolemic counterparts. Hypercholesterolemia-induced priming of HSPCs generated leukocytes that more readily migrated into the artery, which resulted in a 2.1-fold increase in atherosclerotic plaque size. In addition, these plaques had a more advanced phenotype and exhibited a 1.2-fold increase in macrophages and 1.8-fold increase in granulocytes. These results identify hypercholesterolemia-induced activation and priming of HSPCs as a novel pathway in the development of atherosclerosis. Inhibition of this proinflammatory differentiation pathway on the HSPC level has the potential to reduce atherosclerosis.Seijkens, T., Hoeksema, M. A., Beckers, L., Smeets, E., Meiler, S., Levels, J., Tjwa, M., de Winther, M. P. J., Lutgens, E. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis.
引用
收藏
页码:2202 / 2213
页数:12
相关论文
共 41 条
  • [31] Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata
    Swirski, Filip K.
    Libby, Peter
    Aikawa, Elena
    Alcaide, Pilar
    Luscinskas, F. William
    Weissleder, Ralph
    Pittet, Milkael J.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (01) : 195 - 205
  • [32] Demand-adapted regulation of early hematopoiesis in infection and inflammation
    Takizawa, Hitoshi
    Boettcher, Steffen
    Manz, Markus G.
    [J]. BLOOD, 2012, 119 (13) : 2991 - 3002
  • [33] Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells
    Tjwa, Marc
    Sidenius, Nicolai
    Moura, Rute
    Jansen, Sandra
    Theunissen, Koen
    Andolfo, Annapaola
    De Mol, Maria
    Dewerchin, Mieke
    Moons, Lieve
    Blasi, Francesco
    Verfaillie, Catherine
    Carmeliet, Peter
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (04) : 1008 - 1018
  • [34] Hypercholesterolemia and reduced HDL-C promote hematopoietic stem cell proliferation and monocytosis: Studies in mice and FH children
    Tolani, Sonia
    Pagler, Tamara A.
    Murphy, Andrew J.
    Bochem, Andrea E.
    Abramowicz, Sandra
    Welch, Carrie
    Nagareddy, Prabhakara R.
    Holleran, Steve
    Hovingh, G. K.
    Kuivenhoven, Jan Albert
    Tall, Alan R.
    [J]. ATHEROSCLEROSIS, 2013, 229 (01) : 79 - 85
  • [35] Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow
    Ueda, Y
    Kondo, M
    Kelsoe, G
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 201 (11) : 1771 - 1780
  • [36] IL-1R Type I-Dependent Hemopoietic Stem Cell Proliferation Is Necessary for Inflammatory Granulopoiesis and Reactive Neutrophilia
    Ueda, Yoshihiro
    Cain, Derek W.
    Kuraoka, Masayuki
    Kondo, Motonari
    Kelsoe, Garnett
    [J]. JOURNAL OF IMMUNOLOGY, 2009, 182 (10) : 6477 - 6484
  • [37] Hematopoietic Stem Cell Quiescence Is Maintained by Compound Contributions of the Retinoblastoma Gene Family
    Viatour, Patrick
    Somervaille, Tim C.
    Venkatasubrahmanyam, Shivkumar
    Kogan, Scott
    McLaughlin, Margaret E.
    Weissman, Irving L.
    Butte, Atul J.
    Passegue, Emmanuelle
    Sage, Julien
    [J]. CELL STEM CELL, 2008, 3 (04) : 416 - 428
  • [38] Lessons from sudden coronary death - A comprehensive morphological classification scheme for atherosclerotic lesions
    Virmani, R
    Kolodgie, FD
    Burke, AP
    Farb, A
    Schwartz, SM
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2000, 20 (05) : 1262 - 1275
  • [39] The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models
    Weber, Christian
    Zernecke, Alma
    Libby, Peter
    [J]. NATURE REVIEWS IMMUNOLOGY, 2008, 8 (10) : 802 - 815
  • [40] Atherosclerosis: current pathogenesis and therapeutic options
    Weber, Christian
    Noels, Heidi
    [J]. NATURE MEDICINE, 2011, 17 (11) : 1410 - 1422