An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds

被引:28
作者
Tang, Guo-ji [1 ]
Huang, Nan-jing [2 ]
机构
[1] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Guangxi, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inexact proximal point algorithm; Hadamard manifold; Maximal monotone vector field; VARIATIONAL-INEQUALITIES; QUASI-CONVEX; ITERATIVE ALGORITHMS; PREINVEX FUNCTIONS; INVEX SETS; EXTRAGRADIENT;
D O I
10.1016/j.orl.2013.08.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, an inexact proximal point algorithm concerned with the singularity of maximal monotone vector fields is introduced and studied on Hadamard manifolds, in which a relative error tolerance with squared summable error factors is considered. It is proved that the sequence generated by the proposed method is convergent to a solution of the problem. Moreover, an application to the optimization problem on Hadamard manifolds is given. The main results presented in this paper generalize and improve some corresponding known results given in the literature. (C) 2013 Elsevier By. All rights reserved.
引用
收藏
页码:586 / 591
页数:6
相关论文
共 49 条
[41]   Singularities of monotone vector fields and an extragradient-type algorithm [J].
Ferreira, OP ;
Pérez, LRL ;
Németh, SZ .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (01) :133-151
[42]   Singularities of Monotone Vector Fields and an Extragradient-type Algorithm [J].
O. P. Ferreira ;
L. R. Lucambio. Pérez ;
S. Z. Németh .
Journal of Global Optimization, 2005, 31 :133-151
[43]   Proximal Point Algorithms for Finding Zeros of Maximal Monotone Operators in the Presence of Computational Errors [J].
Zaslavski, Alexander J. .
INFINITE PRODUCTS OF OPERATORS AND THEIR APPLICATIONS, 2015, 636 :249-266
[44]   ON THE BREGMAN INEXACT PROXIMAL INTERIOR POINT ALGORITHM FOR ABSTRACT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS [J].
Ait Mansour, M. ;
Chbani, Z. ;
Riahi, H. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (04) :681-710
[45]   On the convergence rate of the scaled proximal decomposition on the graph of a maximal monotone operator (SPDG) algorithm [J].
Alves, M. Marques ;
Lima, Samara Costa .
OPTIMIZATION, 2020, 69 (11) :2371-2381
[46]   A Novel Halpern-type Algorithm for a Monotone Inclusion Problem and a Fixed Points Problem on Hadamard Manifolds [J].
He, Huimin ;
Peng, Jigen ;
Fan, Qinwei .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (10) :1031-1043
[47]   Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems [J].
Khatibzadeh, Hadi ;
Mohebbi, Vahid ;
Ranjbar, Sajad .
OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (06) :1146-1163
[48]   WEAK AND LINEAR CONVERGENCE OF A GENERALIZED PROXIMAL POINT ALGORITHM WITH ALTERNATING INERTIAL STEPS FOR A MONOTONE INCLUSION PROBLEM [J].
Shehu, Yekini ;
Ezeora, Jeremiah N. .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06) :881-892
[49]   A SEARCH-FREE O (1/k3/2) HOMOTOPY INEXACT PROXIMAL-NEWTON EXTRAGRADIENT ALGORITHM FOR MONOTONE VARIATIONAL INEQUALITIES [J].
Alves, M. Marques ;
Pereira, J. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (04) :3235-3258