Broad- and narrow-sense validity performance of three polygenic risk score methods for prostate cancer risk assessment

被引:7
作者
Yu, Hongjie [1 ]
Shi, Zhuqing [1 ]
Lin, Xiaoling [2 ]
Bao, Quanwa [3 ]
Jia, Haifei [2 ]
Wei, Jun [1 ]
Helfand, Brian T. [1 ]
Zheng, Siqun. L. [1 ]
Duggan, David [4 ]
Lu, Daru [3 ]
Mo, Zengnan [5 ]
Xu, Jianfeng [1 ,2 ]
机构
[1] NorthShore Univ HealthSyst, Program Personalized Canc Care, 1001 Univ Pl, Evanston, IL 60201 USA
[2] Fudan Univ, Huashan Hosp, Fudan Inst Urol, Shanghai, Peoples R China
[3] Fudan Univ, Sch Life Sci, State Key Lab Genet Engn, Shanghai, Peoples R China
[4] City Hope Natl Med Ctr, Translat Genom Res Inst, Phoenix, AZ USA
[5] Guangxi Med Univ, Ctr Genom & Personalized Med, Nanning, Guangxi Zhuang, Peoples R China
关键词
clinical validity; genetic risk score; prostate cancer; GENOME-WIDE ASSOCIATION; MEN; PREDICTION; VARIANTS; BIOPSY;
D O I
10.1002/pros.23920
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Several polygenic risk score (PRS) methods are available for measuring the cumulative effect of multiple risk-associated single nucleotide polymorphisms (SNPs). Their performance in predicting risk at the individual level has not been well studied. Methods We compared the performance of three PRS methods for prostate cancer risk assessment in a clinical trial cohort, including genetic risk score (GRS), pruning and thresholding (P + T), and linkage disequilibrium prediction (LDpred). Performance was evaluated for score deciles (broad-sense validity) and score values (narrow-sense validity). Results A training process was required to identify the best P + T model (397 SNPs) and LDpred model (3 011 362 SNPs). In contrast, GRS was directly calculated based on 110 established risk-associated SNPs. For broad-sense validity in the testing population, higher deciles were significantly associated with higher observed risk;P(trend)was 7.40 x 10(-11), 7.64 x 10(-13), and 7.51 x 10(-10)for GRS, P + T, and LDpred, respectively. For narrow-sense validity, the calibration slope (1 is best) was 1.03, 0.77, and 0.87, and mean bias score (0 is best) was 0.09, 0.21, and 0.10 for GRS, P + T, and LDpred, respectively. Conclusions The performance of GRS was better than P + T and LDpred. Fewer and well-established SNPs of GRS also make it more feasible and interpretable for genetic testing at the individual level.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
[1]   Systematic evaluation of narrow-sense validity of polygenic risk score for prostate cancer in a Chinese prostate biopsy cohort [J].
Wu, Yishuo ;
Ruan, Xiaohao ;
Gao, Peng ;
Da, Huang ;
Fang, Zujun ;
Xu, Danfeng ;
Jiang, Haowen ;
Ding, Qiang ;
Lin, Xiaoling ;
Lu, Daru ;
Na, Rong .
CLINICAL GENETICS, 2023, 103 (06) :636-643
[2]   Concept and benchmarks for assessing narrow-sense validity of genetic risk score values [J].
Yu, Hongjie ;
Shi, Zhuqing ;
Wu, Yishuo ;
Wang, Chi-Hsiung ;
Lin, Xiaoling ;
Perschon, Chelsea ;
Isaacs, William B. ;
Helfand, Brian T. ;
Zheng, S. Lilly ;
Duggan, David ;
Mo, Zengnan ;
Lu, Daru ;
Xu, Jianfeng .
PROSTATE, 2019, 79 (10) :1099-1105
[3]   Polygenic Risk Scores in Prostate Cancer Risk Assessment and Screening [J].
Byrne, Lindsey ;
Toland, Amanda Ewart .
UROLOGIC CLINICS OF NORTH AMERICA, 2021, 48 (03) :387-399
[4]   Validation of a prostate cancer polygenic risk score [J].
Black, Mary H. ;
Li, Shuwei ;
LaDuca, Holly ;
Lo, Min-Tzu ;
Chen, Jefferey ;
Hoiness, Robert ;
Gutierrez, Stephanie ;
Tippin-Davis, Brigette ;
Lu, Hsiao-Mei ;
Gielzak, Marta ;
Wiley, Kathleen ;
Shi, Zhuqing ;
Wei, Jun ;
Zheng, Siqun Lilly ;
Helfand, Brian T. ;
Isaacs, William ;
Xu, Jianfeng .
PROSTATE, 2020, 80 (15) :1314-1321
[5]   Polygenic risk score in prostate cancer [J].
Oh, Jong Jin ;
Hong, Sung Kyu .
CURRENT OPINION IN UROLOGY, 2022, 32 (05) :466-471
[6]   Assessment of a Polygenic Risk Score in Screening for Prostate Cancer [J].
Mchugh, H. K. ;
Bancroft, E. K. ;
Saunders, E. E. ;
Brook, M. N. ;
Mcgrowder, E. ;
Wakerell, S. ;
James, D. ;
Rageevakumar, R. ;
Benton, B. ;
Taylor, N. ;
Myhill, K. ;
Hogben, M. ;
Kinsella, N. ;
Sohaib, A. A. ;
Cahill, D. ;
Hazell, S. ;
Withey, S. J. ;
Mcaddy, B. ;
Page, E. C. ;
Osborne, A. ;
Benafif, S. ;
Jones, A-B ;
Patel, D. ;
Huang, DY. ;
Kaur, K. ;
Russell, B. ;
Nicholson, R. ;
Croft, F. ;
Sobczak, J. ;
Mcnally, C. ;
Mutch, F. ;
Bennett, S. ;
Kingston, L. ;
Karlsson, Q. ;
Dadaev, T. ;
Saya, S. ;
Merson, S. ;
Wood, A. ;
Dennis, N. ;
Hussain, N. ;
Thwaites, A. ;
Hussain, S. ;
Rafi, I ;
Ferris, M. ;
Kumar, P. ;
James, N. D. ;
Pashayan, N. ;
Kote-Jarai, Z. ;
Eeles, R. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2025, 392 (14) :1406-1417
[7]   Polygenic risk score for genetic evaluation of prostate cancer risk in Asian populations: A narrative review [J].
Song, Sang Hun ;
Byun, Seok-Soo .
INVESTIGATIVE AND CLINICAL UROLOGY, 2021, 62 (03) :256-266
[8]   Clinical features of prostate cancer by polygenic risk score [J].
Spears, Christina ;
Xu, Menglin ;
Shoben, Abigail ;
Dason, Shawn ;
Toland, Amanda Ewart ;
Byrne, Lindsey .
FAMILIAL CANCER, 2024, 23 (04) :499-505
[9]   Prostate cancer risk prediction using a polygenic risk score [J].
Sipeky, Csilla ;
Talala, Kirsi M. ;
Tammela, Teuvo L. J. ;
Taari, Kimmo ;
Auvinen, Anssi ;
Schleutker, Johanna .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   Prostate cancer polygenic risk score and prediction of lethal prostate cancer [J].
Klein, Robert J. ;
Vertosick, Emily ;
Sjoberg, Dan ;
Ulmert, David ;
Ronn, Ann-Charlotte ;
Haggstrom, Christel ;
Thysell, Elin ;
Hallmans, Goran ;
Dahlin, Anders ;
Stattin, Par ;
Melander, Olle ;
Vickers, Andrew ;
Lilja, Hans .
NPJ PRECISION ONCOLOGY, 2022, 6 (01)