PRODUCT-TYPE OPERATORS FROM WEIGHTED ZYGMUND SPACES TO BLOCH-ORLICZ SPACES

被引:0
作者
Yang, Yong [1 ]
Jiang, Zhi-Jie [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Sichuan, Peoples R China
关键词
Weighted Zygmund space; Bloch-Orlicz space; Product-type operator; Test function; Boundedness; Compactness; INTEGRAL-TYPE OPERATORS; GENERALIZED COMPOSITION OPERATORS; AREA NEVANLINNA SPACES; MIXED NORM SPACE; BERGMAN SPACES; H-INFINITY; DIFFERENTIATION OPERATORS; UNIT BALL; MULTIPLICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let D be the open unit disk in the complex plane C and H(D) the class of all analytic functions on D. Let phi be an analytic self-map of D and u is an element of H(D). The boundedness and compactness of the product-type operators (DMuC phi)-M-n, (DC phi Mu)-C-n, (MuDC phi)-C-n, (C phi DMu)-M-n, MuC phi Dn and C phi MuDn from weighted Zygmund spaces to Bloch-Orlicz spaces are characterized by constructing some test functions in weighted Zygmund spaces.
引用
收藏
页码:132 / 151
页数:20
相关论文
共 60 条
[1]   Weighted Composition Operators on the Bloch Space of a Bounded Homogeneous Domain [J].
Allen, Robert F. ;
Colonna, Flavia .
TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 :11-+
[2]  
[Anonymous], 1992, HOKKAIDO MATH J
[3]  
[Anonymous], PRODUCT TYPE O UNPUB
[4]   Generalized weighted composition operators from Zygmund spaces to Bloch-Orlicz type spaces [J].
Bai, Hong-bin ;
Jiang, Zhi-jie .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :89-97
[5]   Weighted Composition Operators from the Minimal Mobius Invariant Space into the Bloch Space [J].
Colonna, Flavia ;
Li, Songxiao .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) :395-409
[6]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[7]  
Duren P., 1970, THEORY SPACES
[8]   Weighted Composition Operators Between Zygmund Type Spaces and Their Essential Norms [J].
Esmaeili, Kobra ;
Lindstrom, Mikael .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 75 (04) :473-490
[9]   Composition followed by differentiation between Bergman and Hardy spaces [J].
Hibschweiler, RA ;
Portnoy, N .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) :843-855
[10]  
Jiang ZJ, 2014, UTILITAS MATHEMATICA, V93, P205