Bounds for the blowup time of the solutions to quasi-linear parabolic problems

被引:36
作者
Bao, Aiguo [1 ]
Song, Xianfa [1 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2014年 / 65卷 / 01期
基金
中国国家自然科学基金;
关键词
Quasi-linear parabolic equation; Initial-boundary value problem; Bounds for blowup time; UP TIME; EQUATION;
D O I
10.1007/s00033-013-0325-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the lower and the upper bounds of the blowup time of the solutions to quasi-linear parabolic problems subject to Dirichlet(or Neumann) boundary condition. Our results are suitable for the problems with any smooth bounded domain and . In some special cases, we can even get the exact values of blowup time.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 15 条
[1]   LOWER BOUNDS FOR BLOW-UP TIME IN SOME NON-LINEAR PARABOLIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS [J].
Enache, Cristian .
GLASGOW MATHEMATICAL JOURNAL, 2011, 53 :569-575
[2]   Blow up Theories for Semilinear Parabolic Equations [J].
Hu, Bei .
BLOW UP THEORIES FOR SEMILINEAR PARABOLIC EQUATIONS, 2011, 2018 :1-+
[3]  
Jumpen W., 2010, J MATH SCI ADV APPL, V5, P209
[4]   Global existence and blow-up for a nonlinear porous medium equation [J].
Li, FC ;
Xie, CH .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :185-192
[5]   Uniform blow-up rate for a nonlocal degenerate parabolic equations [J].
Liu Qilin ;
Li Yuxiang ;
Gao Hongjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (04) :881-889
[7]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[8]   Bounds for blow-up time in nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :438-447
[9]   Lower bounds for blow-up time in parabolic problems under Dirichlet conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1196-1205
[10]   Bounds for blow-up time for the heat equation under nonlinear boundary conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :1289-1296