Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian

被引:13
作者
Hu, Shouchuan [2 ]
Papageorgiou, Nikolas S. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] SW Missouri State Univ, Dept Math, Springfield, MO 65804 USA
关键词
p-Laplacian; Nonlinear eigenvalue problem; (S)(+)-operator; Degree map; Positive solutions;
D O I
10.1016/j.na.2007.10.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear eigenvalue problem driven by the p-Laplacian differential operator and with a nonsmooth potential. Using degree theoretic arguments based on the degree map for certain operators of monotone type, we show that the problem has at least two nontrivial positive solutions as the parameter lambda > 0 varies in a half-line. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4286 / 4300
页数:15
相关论文
共 20 条
[1]   UNIQUENESS OF THE SOLUTION OF A SEMILINEAR BOUNDARY-VALUE PROBLEM [J].
ANGENENT, SB .
MATHEMATISCHE ANNALEN, 1985, 272 (01) :129-138
[2]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39
[4]  
Cellina A, 1969, ANN MAT PUR APPL, V82, P17, DOI DOI 10.1007/BF02410784
[6]  
DANCER EN, 1986, P LOND MATH SOC, V53, P429
[7]   On the number of positive solutions for quasilinear elliptic eigenvalue problems [J].
Guo, ZM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (02) :229-247
[8]  
Guo ZM, 1998, ACTA MATH SIN, V14, P245
[9]  
Hai DD, 1999, PROG NONLIN, V35, P349
[10]   Positive solutions of quasilinear boundary value problems [J].
Hai, DD ;
Schmitt, K ;
Shivaji, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (02) :672-686