On the LP boundedness of wave operators for two-dimensional Schrodinger operators with threshold obstructions

被引:14
作者
Erdogan, M. Burak [1 ]
Goldberg, Michael [2 ]
Green, William R. [3 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[3] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
基金
美国国家科学基金会;
关键词
Wave operator; Schrodinger; Eigenvalue; Threshold; 4-DIMENSIONAL SCHRODINGER; EXPANSIONS; EQUATIONS; DECAY; TIME;
D O I
10.1016/j.jfa.2017.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H = -Delta + V be a Schrodinger operator on L-2(R-2) with real-valued potential V, and let H-0 = -Delta. If V has sufficient pointwise decay, the wave operators W-+/- = s - lim(t ->+/-infinity)e(itH) e(-itH0) are known to be bounded on L-P(R-2) for all 1 < p < infinity if zero is not an eigenvalue or resonance. We show that if there is an s-wave resonance or an eigenvalue only at zero, then the wave operators are bounded on L-P(R-2) for 1 < p < infinity. This result stands in contrast to results in higher dimensions, where the presence of zero energy obstructions is known to shrink the range of valid exponents p. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2139 / 2161
页数:23
相关论文
共 34 条
[1]  
Agmon S., 1975, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V2, P151
[2]  
[Anonymous], 1972, METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-585001-8.50008-8
[3]  
[Anonymous], 2004, Dynamics of PDE
[4]  
[Anonymous], NBS STANDARDS APPL M
[5]  
Beceanu M., 2017, J SPECTR TH IN PRESS
[6]  
Beceanu M., 2016, PREPRINT
[7]   STRUCTURE OF WAVE OPERATORS FOR A SCALING-CRITICAL CLASS OF POTENTIALS [J].
Beceanu, Marius .
AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (02) :255-308
[8]   Lp-boundedness of the wave operator for the one dimensional Schrodinger operator [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) :415-438
[9]  
Dell'Antonio G., 2017, PREPRINT
[10]   Dispersive Estimates for Four Dimensional Schrodinger and Wave Equations with Obstructions at Zero Energy [J].
Erdogan, M. Burak ;
Goldberg, Michael ;
Green, William R. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (10) :1936-1964