Strong Geodetic Number of Complete Bipartite Graphs and of Graphs with Specified Diameter

被引:16
作者
Irsic, Vesna [1 ,2 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
关键词
Geodetic number; Strong geodetic number; Isometric path number; Complete bipartite graphs; Diameter;
D O I
10.1007/s00373-018-1885-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The strong geodetic problem is a recent variation of the classical geodetic problem. For a graph G, its strong geodetic number is the cardinality of a smallest vertex subset S, such that each vertex of G lies on one fixed shortest path between a pair of vertices from S. In this paper, some general properties of the strong geodetic problem are studied, especially in connection with the diameter of a graph. The problem is also solved for balanced complete bipartite graphs.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 20 条
[1]   Graphs with Large Geodetic Number [J].
Ahangar, Hossein Abdollahzadeh ;
Kosari, Saeed ;
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
FILOMAT, 2015, 29 (06) :1361-1368
[2]  
[Anonymous], 2001, J COMBIN MATH COMBIN
[3]  
Bresar B, 2011, STRUCTURAL ANALYSIS OF COMPLEX NETWORKS, P197, DOI 10.1007/978-0-8176-4789-6_8
[4]   GEODETIC NUMBER VERSUS HULL NUMBER IN P3-CONVEXITY [J].
Centeno, C. C. ;
Penso, L. D. ;
Rautenbach, D. ;
de SA, V. G. Pereira .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :717-731
[5]   On the geodetic number of a graph [J].
Chartrand, G ;
Harary, F ;
Zhang, P .
NETWORKS, 2002, 39 (01) :1-6
[6]   BLOCK DECOMPOSITION APPROACH TO COMPUTE A MINIMUM GEODETIC SET [J].
Ekim, Tinaz ;
Erey, Aysel .
RAIRO-OPERATIONS RESEARCH, 2014, 48 (04) :497-507
[7]  
Ekim T, 2012, LECT NOTES COMPUT SC, V7256, P279, DOI 10.1007/978-3-642-29344-3_24
[8]  
Fitzpatrick S. L., 1999, C NUMER, V137, P109
[9]   GEODETIC CONTRACTION GAMES ON GRAPHS [J].
FRAENKEL, AS ;
HARARY, F .
INTERNATIONAL JOURNAL OF GAME THEORY, 1989, 18 (03) :327-338
[10]   THE GEODETIC NUMBER OF A GRAPH [J].
HARARY, F ;
LOUKAKIS, E ;
TSOUROS, C .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) :89-95