High quality sustainable Cu2ZnSnSe4 (CZTSe) absorber layers in highly efficient CZTSe solar cells

被引:38
作者
Lai, Fang-I [1 ,2 ]
Yang, Jui-Fu [1 ,3 ]
Wei, Yu-Ling [3 ]
Kuo, Shou-Yi [3 ,4 ]
机构
[1] Yuan Ze Univ, Dept Photon Engn, 135 Yuan Tung Rd, Chungli 320, Taiwan
[2] Natl Cheng Kung Univ, Adv Optoelectron Technol Ctr, Tainan 701, Taiwan
[3] Chang Gung Univ, Dept Elect Engn, 259 Wen Hwa 1st Rd, Taoyuan 333, Taiwan
[4] Chang Gung Mem Hosp, Dept Nucl Med, 5 Fuxing St, Taoyuan 333, Taiwan
关键词
THIN-FILMS; OPTICAL-PROPERTIES; PHOTOVOLTAICS; STANNITE;
D O I
10.1039/c6gc02300b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polycrystalline Cu2ZnSnSe4 (CZTSe) thin films were directly deposited on Mo-coated glass substrates by evaporation and following selenization. Single-phase CZTSe films were formed in the temperature range of 480-540 degrees C, with a selenization step of 30 min. X-ray diffraction and Raman spectroscopy revealed that these thin films exhibited high crystallinity and strong preferential orientation along the (112) direction, confirming the presence of the kesterite CZTSe phase. The films prepared at temperatures above 520 degrees C showed many voids at the bottom of the CZTSe absorber layer, due to Sn loss during high-temperature growth, as confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy analyses. The band gaps (Eg) of the CZTSe thin films, which were obtained by photoluminescence spectroscopy, varied from 0.88 to 0.93 eV, depending on the SnSex loss during selenization. The solar cell fabricated with the CZTSe film grown at 500 degrees C showed the best conversion efficiency of 7.18%, with an open-circuit voltage of 0.38 V, a short-circuit current density of 42.34 mA cm(-2), and a fill factor of 44%. Further improvements in the microstructure and Sn loss of CZTSe films may increase the efficiency of the CZTSe solar cells.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 46 条
[1]   Electronic structure and lattice dynamics in kesterite-type Cu2ZnSnSe4 from first-principles calculations [J].
Amiri, Narjes Beigom Mortazavi ;
Postnikov, Andrei .
PHYSICAL REVIEW B, 2010, 82 (20)
[2]   Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell [J].
Barkhouse, D. Aaron R. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :6-11
[3]   Influence of selenization techniques on the reaction kinetics of chalcopyrite thin films [J].
Bekker, J ;
Alberts, V ;
Witcomb, MJ .
THIN SOLID FILMS, 2001, 387 (1-2) :40-43
[4]   Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers [J].
Bhattacharya, RN ;
Batchelor, W ;
Hiltner, JF ;
Sites, JR .
APPLIED PHYSICS LETTERS, 1999, 75 (10) :1431-1433
[5]   Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells [J].
Brammertz, G. ;
Buffiere, M. ;
Oueslati, S. ;
ElAnzeery, H. ;
Ben Messaoud, K. ;
Sahayaraj, S. ;
Koeble, C. ;
Meuris, M. ;
Poortmans, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[6]   Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells [J].
Chen, Shiyou ;
Walsh, Aron ;
Yang, Ji-Hui ;
Gong, X. G. ;
Sun, Lin ;
Yang, Ping-Xiong ;
Chu, Jun-Hao ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2011, 83 (12)
[7]   Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells [J].
Contreras, MA ;
Romero, MJ ;
Noufi, R .
THIN SOLID FILMS, 2006, 511 (51-54) :51-54
[8]  
Contreras MA, 1999, PROG PHOTOVOLTAICS, V7, P311, DOI 10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO
[9]  
2-G
[10]   Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence [J].
Djemour, Rabie ;
Mousel, Marina ;
Redinger, Alex ;
Guetay, Levent ;
Crossay, Alexandre ;
Colombara, Diego ;
Dale, Phillip J. ;
Siebentritt, Susanne .
APPLIED PHYSICS LETTERS, 2013, 102 (22)