On multiplicative functions which are additive on sums of primes

被引:16
作者
Dubickas, Arturas [1 ]
Sarka, Paulius [1 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
关键词
Multiplicative functions; prime numbers; Goldbach conjecture; UNIQUENESS SETS;
D O I
10.1007/s00010-012-0156-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a multiplicative function satisfying f(p (0)) not equal 0 for at least one prime number p (0), and let k a parts per thousand yen 2 be an integer. We show that if the function f satisfies f(p (1) + p (2) + . . . + p (k) ) = f(p (1)) + f(p (2)) + . . . + f(p (k) ) for any prime numbers p (1), p (2), . . . ,p (k) then f must be the identity f(n) = n for each . This result for k = 2 was established earlier by Spiro, whereas the case k = 3 was recently proved by Fang. In the proof of this result for k a parts per thousand yen 6 we use a recent result of Tao asserting that every odd number greater than 1 is the sum of at most five primes.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 13 条
[1]  
Chen KK, 2010, PUBL MATH-DEBRECEN, V76, P425
[2]  
Chung P.V., 1996, Math. Slovaca, V46, P165
[3]  
Chung PV, 1999, PUBL MATH-DEBRECEN, V55, P237
[4]   A new characteristic of the identity function [J].
DeKoninck, JM ;
Katai, I ;
Phong, BM .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :325-338
[5]  
Deshouillers J-M., 1997, ELECT RES ANNOUNC AM, V3, P99
[6]   A characterization of the identity function with equation f(p plus q plus r)=f(p) plus f(q) plus f(r) [J].
Fang, Jin-Hui .
COMBINATORICA, 2011, 31 (06) :697-701
[7]  
GRANVILLE A, 1989, NATO ADV SCI I C-MAT, V265, P423
[8]  
KANIECKI L, 1995, ACTA ARITH, V72, P361
[9]   On the Vinogradov bound in the three primes Goldbach conjecture [J].
Liu, MC ;
Wang, TZ .
ACTA ARITHMETICA, 2002, 105 (02) :133-175
[10]  
Phong B.M., 2004, ANN U SCI BUDAPEST S, V24, P295