Nonsmooth semi-infinite programming problems with mixed constraints

被引:27
作者
Kanzi, N. [1 ]
Nobakhtian, S. [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
关键词
Optimality conditions; Semi-infinite programming; Mixed constraints; Nonsmooth analysis; SYSTEMS;
D O I
10.1016/j.jmaa.2008.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonsmooth semi-infinite programming problem with a feasible set defined by inequality and equality constraints and a set constraint. First, we Study some alternative theorems which involve linear and sublinear functions and a convex set and we propose several generalizations of them. Then, alternative theorems are applied to obtain, under different constraint qualifications, several necessary optimality conditions in the type of Fritz-John and Karush-Kuhn-Tucker. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 19 条
[1]  
Abadie J.M., 1967, Nonlinear Programming, P19
[2]  
[Anonymous], 1969, Nonlinear programming: a unified approach
[3]  
[Anonymous], 1991, CONVEX ANAL MINIMIZA
[4]  
[Anonymous], 1970, PRINCETON MATH SER
[5]  
[Anonymous], GRAD TEXTS MATH
[6]   Locally Farkas-Minkowski systems in convex semi-infinite programming [J].
Fajardo, MD ;
López, MA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (02) :313-335
[7]  
Goberna MA., 1998, LINEAR SEMIINFINITE
[8]  
GOBERNA MA, 1984, TRABAJOS ESTADISTICA, V35, P32
[9]   Constraint qualifications for semi-infinite systems of convex inequalities [J].
Li, W ;
Nahak, C ;
Singer, I .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) :31-52
[10]   OPTIMALITY CONDITIONS FOR NONDIFFERENTIABLE CONVEX SEMI-INFINITE PROGRAMMING [J].
LOPEZ, MA ;
VERCHER, E .
MATHEMATICAL PROGRAMMING, 1983, 27 (03) :307-319