A partial order where all monotone maps are definable

被引:0
作者
Goldstern, M
Shelah, S
机构
[1] VIENNA TECH UNIV,A-1040 VIENNA,AUSTRIA
[2] HEBREW UNIV JERUSALEM,IL-91094 JERUSALEM,ISRAEL
[3] FREIE UNIV,MATH WE2,D-14195 BERLIN,GERMANY
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is consistent that there is a partial order (P, less than or equal to) of size aleph(1) such that every monotone function f: P --> P is first order definable in (P, less than or equal to).
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
  • [41] Open maps and observational equivalences for timed partial order models
    Virbitskaite, IB
    Gribovskaya, NS
    FUNDAMENTA INFORMATICAE, 2004, 60 (1-4) : 383 - 399
  • [42] ON LOG CONCAVITY FOR ORDER-PRESERVING MAPS OF PARTIAL ORDERS
    DAYKIN, DE
    DAYKIN, JW
    PATERSON, MS
    DISCRETE MATHEMATICS, 1984, 50 (2-3) : 221 - 226
  • [43] Additive Maps Preserving the Star Partial Order on B(H)
    Xi Cui
    Ji Guo-xing
    Ji You-qing
    CommunicationsinMathematicalResearch, 2015, 31 (01) : 89 - 96
  • [44] EQUATIONALLY DEFINABLE CLASSES OF PARTIAL ORDERING RELATIONS
    WOSTNER, U
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A643 - A643
  • [45] MONOTONE MAPS AND EPSILON-MAPS BETWEEN GRAPHS
    CARLISLE, RL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1069 - &
  • [46] Open maps and trace semantics for timed partial order models
    Virbitskaite, IB
    Gribovskaja, NS
    PERSPECTIVES OF SYSTEM INFORMATICS, 2003, 2890 : 248 - 259
  • [47] Not Finitely Definable Partial Clones on a Finite Set
    Romov, Boris A.
    2013 IEEE 43RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2013), 2013, : 141 - 145
  • [48] From chaos to the order and backward -: there, where ... ⟪everything is all-in⟫
    Orlov, AB
    VOPROSY PSIKHOLOGII, 2000, (02) : 52 - +
  • [49] ON WEAKLY GRADED POSETS OF ORDER-PRESERVING MAPS UNDER THE NATURAL PARTIAL ORDER
    Jitjankarn, Phichet
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 347 - 358
  • [50] Three-Dimensional Spaces Where All Bounded Chebyshev Sets Are Monotone Path Connected
    Bednov, B. B.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 283 - 295