The quantum Neumann model: asymptotic analysis

被引:2
作者
Bellon, M
Talon, M
机构
[1] CNRS, LPHTE, F-75252 Paris 05, France
[2] Univ Paris 06, UMR 7589, F-75252 Paris, France
关键词
D O I
10.1016/j.physleta.2005.11.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use semi-classical and perturbation methods to establish the quantum theory of the Neumann model, and explain the features observed in previous numerical computations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 10 条
[1]   POISSON STRUCTURE AND INTEGRABILITY OF THE NEUMANN-MOSER-UHLENBECK MODEL [J].
AVAN, J ;
TALON, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (23) :4477-4488
[2]   SEPARATION OF VARIABLES FOR THE CLASSICAL AND QUANTUM NEUMANN MODEL [J].
BABELON, O ;
TALON, M .
NUCLEAR PHYSICS B, 1992, 379 (1-2) :321-339
[3]   Spectrum of the quantum Neumann model [J].
Bellon, M ;
Talon, A .
PHYSICS LETTERS A, 2005, 337 (4-6) :360-368
[4]   Quantum integrability of quadratic Killing tensors [J].
Duval, C ;
Valent, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[5]   QUANTIZED NEUMANN PROBLEM, SEPARABLE POTENTIALS ON S-N AND THE LAME EQUATION [J].
GURARIE, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) :5355-5391
[6]   On the connection formulas and the solutions of the wave equation [J].
Langer, RE .
PHYSICAL REVIEW, 1937, 51 (08) :0669-0676
[7]  
MOSER J, 1978, P CIME BRESS PROGR M, P233
[8]  
MUMFORD D, 1984, TAT LECT THETA, V2
[9]  
NEUMANN C, 1859, CRELLE J, V56, P46
[10]  
Whittaker E. T., 1902, A course in modern analysis