Effect of heat treatment atmosphere on the structure and apatite-inducing ability of Ca, P, Si and Na incorporated microarc oxidation coating on titanium

被引:6
作者
Zhou, Rui [1 ,2 ]
Wei, Daqing [2 ]
Cao, Jianyun [3 ]
Feng, Wei [2 ]
Cheng, Su [4 ]
Du, Qing [2 ]
Li, Baoqiang [2 ]
Wang, Yaming [2 ]
Jia, Dechang [2 ]
Zhou, Yu [2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Harbin Inst Technol, Dept Mat Sci & Engn, Harbin 150001, Peoples R China
[3] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Harbin Univ Sci & Technol, Sch Architecture & Civil Engn, Dept Mech Engn, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Titanium; Microarc oxidation; Heat treatment atmosphere; Structure; Apatite-inducing ability; SURFACE; BIOACTIVITY; FILMS;
D O I
10.1016/j.surfcoat.2016.12.047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Amorphous microarc oxidation (MAO) coating containing Ca, P, Si and Na elements on Ti substrate has been heat treated in different atmospheres (air or argon) to adjust the phase composition, surface structure and bioactivity. After heat treatment in air at 800 degrees C for 1 h, the coating consists of anatase, rutile and CaTi4(PO4)(6), with almost unchanged microporous surface structure. As for the one treated in argon at 800 degrees C for 1 h, anatase and rutile are formed on the coating, and the coating surface is covered by flower-like rutile particles. The formation of rutile particles could be attributed to the prior growth of the oxidized beta-Ti along the discharge channel caused by the diffusion of incorporated elements. Thanks to the crystallization of TiO2 and the rise of surface roughness, which provides good sites for apatite nucleation, the MAO coated Ti after heat treatment in argon at 800 degrees C exhibits good apatite-inducing ability. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 34 条
[1]  
[Anonymous], 1984, RARE METAL MAT HDB
[2]   Sol-gel silica-based biomaterials and bone tissue regeneration [J].
Arcos, Daniel ;
Vallet-Regi, Maria .
ACTA BIOMATERIALIA, 2010, 6 (08) :2874-2888
[3]   Bioactivity and corrosion properties of magnesium-substituted CaP coatings produced via electrochemical deposition [J].
Bakin, B. ;
Delice, T. Koc ;
Tiric, U. ;
Birlik, I. ;
Azem, F. Ak .
SURFACE & COATINGS TECHNOLOGY, 2016, 301 :29-35
[4]   Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? [J].
Cai, Kaiyong ;
Bossert, Jorg ;
Jandt, Klaus D. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 49 (02) :136-144
[5]   Metallic implant biomaterials [J].
Chen, Qizhi ;
Thouas, George A. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 87 :1-57
[6]   Cellular chemomechanics at interfaces: sensing, integration and response [J].
Girard, Philippe P. ;
Cavalcanti-Adam, Elisabetta A. ;
Kemkemer, Ralf ;
Spatz, Joachim P. .
SOFT MATTER, 2007, 3 (03) :307-326
[7]   The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation [J].
Gittens, Rolando A. ;
McLachlan, Taylor ;
Olivares-Navarrete, Rene ;
Cai, Ye ;
Berner, Simon ;
Tannenbaum, Rina ;
Schwartz, Zvi ;
Sandhage, Kenneth H. ;
Boyan, Barbara D. .
BIOMATERIALS, 2011, 32 (13) :3395-3403
[8]   Hydrothermal modification of titanium surface in calcium solutions [J].
Hamada, K ;
Kon, M ;
Hanawa, T ;
Yokoyama, K ;
Miyamoto, Y ;
Asaoka, K .
BIOMATERIALS, 2002, 23 (10) :2265-2272
[9]   UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings [J].
Han, Yong ;
Chen, Donghui ;
Sun, Jifeng ;
Zhang, Yumei ;
Xu, Kewei .
ACTA BIOMATERIALIA, 2008, 4 (05) :1518-1529
[10]  
He DH, 2015, SURF COAT TECH, V277, P203, DOI [10.1016/j.surfcoat.2016.07.005, 10.1016/j.surfcoat.2015.07.038]