Risks of an epidemic in a two-layered railway-local area traveling network

被引:31
作者
Ruan, Zhongyuan [1 ]
Hui, Pakming [2 ]
Lin, Haiqing [2 ]
Liu, Zonghua [1 ]
机构
[1] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
关键词
SCALE-FREE NETWORKS; COMPLEX NETWORKS; HETEROGENEOUS NETWORKS; WORLD; MODELS;
D O I
10.1140/epjb/e2012-30292-x
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In view of the huge investments into the construction of high speed rails systems in USA, Japan, and China, we present a two-layer traveling network model to study the risks that the railway network poses in case of an epidemic outbreak. The model consists of two layers with one layer representing the railway network and the other representing the local-area transportation subnetworks. To reveal the underlying mechanism, we also study a simplified model that focuses on how a major railway affects an epidemic. We assume that the individuals, when they travel, take on the shortest path to the destination and become non-travelers upon arrival. When an infection process co-evolves with the traveling dynamics, the railway serves to gather a crowd, transmit the disease, and spread infected agents to local area subnetworks. The railway leads to a faster initial increase in infected agents and a higher steady state infection, and thus poses risks; and frequent traveling leads to a more severe infection. These features revealed in simulations are in agreement with analytic results of a simplified version of the model.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Multiscale mobility networks and the spatial spreading of infectious diseases [J].
Balcan, Duygu ;
Colizza, Vittoria ;
Goncalves, Bruno ;
Hu, Hao ;
Ramasco, Jose J. ;
Vespignani, Alessandro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21484-21489
[3]   Velocity and hierarchical spread of epidemic outbreaks in scale-free networks -: art. no. 178701 [J].
Barthélemy, M ;
Barrat, A ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :178701-1
[4]   Absence of epidemic threshold in scale-free networks with degree correlations -: art. no. 028701 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028701
[5]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[6]   Thresholds for Epidemic Spreading in Networks [J].
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[7]   Estimating the impact of school closure on influenza transmission from Sentinel data [J].
Cauchemez, Simon ;
Valleron, Alain-Jacques ;
Boelle, Pierre-Yves ;
Flahault, Antoine ;
Ferguson, Neil M. .
NATURE, 2008, 452 (7188) :750-U6
[8]   The role of the airline transportation network in the prediction and predictability of global epidemics [J].
Colizza, V ;
Barrat, A ;
Barthélemy, M ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (07) :2015-2020
[9]   Invasion threshold in heterogeneous metapopulation networks [J].
Colizza, Vittoria ;
Vespignani, Alessandro .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)
[10]   Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations [J].
Colizza, Vittoria ;
Vespignani, Alessandro .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 251 (03) :450-467