Bochner-Weitzenbock formulas associated with the Rarita-Schwinger operator

被引:13
作者
Branson, T [1 ]
Hijazi, O
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
基金
美国国家科学基金会;
关键词
Rarita-Schwinger operator; spinor; twistor; Weitzenbock formula; Kato inequality; curvature; spectrum;
D O I
10.1142/S0129167X02001174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute several identities relating curvature actions to second-order differential operators on twistors and sections of related bundles. Based on these formulas, we establish various estimates and vanishing theorems.
引用
收藏
页码:137 / 182
页数:46
相关论文
共 26 条
[1]  
AVRAMIDI I, IN PRESS J FUNCT ANA
[2]  
BAUM H, 1990, 108 HUMB U BERL
[3]  
BOURGUIGNON JP, UNPUB MONOGRAPH
[4]   Second order conformal covariants [J].
Branson, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :1031-1042
[5]   Improved forms of some vanishing theorems in Riemannian spin geometry [J].
Branson, T ;
Hijazi, O .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (03) :291-304
[6]  
Branson T, 2000, MATH RES LETT, V7, P245
[7]   Vanishing theorems and eigenvalue estimates in Riemannian spin geometry [J].
Branson, T ;
Hijazi, O .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (07) :921-934
[8]   Stein-Weiss operators and ellipticity [J].
Branson, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :334-383
[9]   Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup [J].
Branson, T ;
Olafsson, G ;
Orsted, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :163-205
[10]  
Branson T, 1999, J LIE THEORY, V9, P491