Jordan triples and Riemannian symmetric spaces

被引:16
作者
Chu, Cho-Ho [1 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
关键词
Jordan triple system; Tits-Kantor-Koecher construction; Orthogonal involutive Lie algebra; Riemannian symmetric space;
D O I
10.1016/j.aim.2008.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a class of real Jordan triple systems, called JH-triples, and show, via the Tits-Kantor-Koecher construction of Lie algebras, that they correspond to a class of Riemannian symmetric spaces including the Hermitian symmetric spaces and the symmetric R-spaces. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2029 / 2057
页数:29
相关论文
共 20 条
[1]   Manifolds of tripotents in JB*-triples [J].
Chu, CH ;
Isidro, JM .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :741-754
[2]  
CHU CH, 1998, EXPOS MATH, V16
[3]   Grassmann manifolds of Jordan algebras [J].
Chu, Cho-Ho .
ARCHIV DER MATHEMATIK, 2006, 87 (02) :179-192
[4]   On the manifold of tripotents in JB*-triples [J].
Isidro, JM ;
Stachó, LL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :147-157
[5]  
Kantor I, 1966, T SEM VEKTOR TENZOR, V13, P310
[6]  
KANTOR IL, 1964, DOKL AKAD NAUK SSSR+, V158, P1271
[8]   On symmetric Cauchy-Riemann manifolds [J].
Kaup, W ;
Zaitsev, D .
ADVANCES IN MATHEMATICS, 2000, 149 (02) :145-181
[9]   On the CR-structure of compact group orbits associated with bounded symmetric domains [J].
Kaup, W ;
Zaitsev, D .
INVENTIONES MATHEMATICAE, 2003, 153 (01) :45-104