BIFURCATION TREES OF PERIODIC MOTIONS IN A PARAMETRICALLY EXCITED PENDULUM

被引:0
作者
Guo, Yu [1 ]
Luo, Albert C. J. [2 ]
机构
[1] Midwestern State Univ, McCoy Sch Engn, Wichita Falls, TX 76308 USA
[2] Southern Illinois Univ Edwardsville, Dept Mech & Ind Engn, Edwardsville, IL 62026 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 6 | 2017年
关键词
RESONANT LAYERS; CHAOS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the bifurcation trees of periodic motions in a parametrically excited pendulum are studied using discrete implicit maps. From the discrete maps, mapping structures are developed for periodic motions in such a parametric pendulum. Analytical bifurcation trees of periodic motions to chaos are developed through the nonlinear algebraic equations of such implicit maps in the specific mapping structures. The corresponding stability and bifurcation analysis of periodic motions is carried out. Finally, numerical results of periodic motions are presented. Many new periodic motions in the parametrically excited pendulum are discovered.
引用
收藏
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1899, METHODES NOUVELLES M
[2]  
[Anonymous], 1964, Nonlinear Oscillations in Physical Systems
[3]   AVERAGING USING ELLIPTIC FUNCTIONS - APPROXIMATION OF LIMIT-CYCLES [J].
COPPOLA, VT ;
RAND, RH .
ACTA MECHANICA, 1990, 81 (3-4) :125-142
[4]  
der Pol BV., 1920, RADIO REV, V1, P701
[5]  
Guo Y., 2016, INT J DYN CONTR, V5, P551
[6]   On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator [J].
Guo, Yu ;
Luo, Albert C. J. .
CHAOS SOLITONS & FRACTALS, 2015, 81 :378-399
[7]  
Krylov N.M., 1935, Methodes approchees de la mecanique nonlineaire dans leurs application a l'Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s'y rapportant
[8]  
Lagrange JL., 1788, MECANIQUE ANAL
[9]   Chaos of a parametrically excited undamped pendulum [J].
Lu, Chunqing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (01) :45-57
[10]   Chaotic motions in the resonant separatrix band of a parametrically excited pendulum [J].
Luo, Albert C.J. .
Communications in Nonlinear Science and Numerical Simulation, 2000, 5 (04) :135-140