A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images

被引:34
作者
Abbas, Qaisar [1 ,2 ]
Fondon Garcia, Irene [3 ]
Celebi, M. Emre [4 ]
Ahmad, Waqar [1 ,2 ]
Mushtaq, Qaisar [1 ,2 ]
机构
[1] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan
[2] Ctr Biomed Imaging & Bioinformat, Key Lab Image Proc, Faisalabad, Pakistan
[3] Sch Engn Path Discovery, Dept Signal Theory & Commun, Seville, Spain
[4] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
关键词
skin cancer; melanoma border detection; dermoscopy; contrast enhancement; hill-climbing; PIGMENTED SKIN-LESIONS; BORDER DETECTION;
D O I
10.1111/j.1600-0846.2012.00670.x
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background/Purpose: Dermoscopy images often suffer from low contrast caused by different light conditions, which reduces the accuracy of lesion border detection. Accordingly for lesion recognition, automatic melanoma border detection (MBD) is an initial as well as crucial task. Method: In this article, a novel perceptually oriented approach for MBD is presented by combing region and edge-based segmentation techniques. The MBD system for color contrast and segmentation improvement consists of four main steps: first, the RGB dermoscopy image is transformed to CIE L(star)a(star)b(star) color space, lesion contrast is then enhanced by adjusting and mapping the intensity values of the lesion pixels in the specified range using the three channels of CIE L(star)a(star)b(star), a hill-climbing algorithm is used later to detect region-of-interest (ROI) map in a perceptually oriented color space using color channels (L-star,a(star),b(star)) and finally, an adaptive thresholding is applied to determine the optimal lesion border. Manually drawn borders obtained from an experienced dermatologist are utilized as a ground truth for performance evaluation. Results: The proposed MBD method is tested on a total of 100 dermoscopy images. A comparative study with three state-of-the-art color and texture-based segmentation techniques (JSeg, dermatologists-like tumor area extraction: DTEA and region-based active contours: RAC), is also conducted to show the effectiveness of our MBD method using measures of true positive rate (TPR), false positive rate (FPR), and error probability (EP). Among different algorithms, our MBD algorithm achieved TPR of 94.25%, FPR of 3.56%, and EP of 4%. Conclusions: The proposed MBD approach is highly accurate to detect the lesion border area. The MBD software and sample of dermoscopy images can be downloaded at http://cs.ntu.edu.pk/research.php.
引用
收藏
页码:E490 / E497
页数:8
相关论文
共 24 条
[1]   A Feature-Preserving Hair Removal Algorithm for Dermoscopy Images [J].
Abbas, Qaisar ;
Fondon Garcia, Irene ;
Celebi, M. Emre ;
Ahmad, Waqar .
SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) :E27-E36
[2]   Skin tumor area extraction using an improved dynamic programming approach [J].
Abbas, Qaisar ;
Celebi, M. E. ;
Fondon Garcia, Irene .
SKIN RESEARCH AND TECHNOLOGY, 2012, 18 (02) :133-142
[3]   Hill-manipulation: An effective algorithm for color image segmentation [J].
Al Aghbari, Zaher ;
Al-Haj, Ruba .
IMAGE AND VISION COMPUTING, 2006, 24 (08) :894-903
[4]  
[Anonymous], COMPUT METHODS PROGR
[5]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[6]  
Argenziano G., 2002, Interactive atlas of dermoscopy
[7]   Border detection in dermoscopy images using statistical region merging [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Iyatomi, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. ;
Malters, Joseph M. ;
Grichnik, James M. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Menzies, Scott W. .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :347-353
[8]   Unsupervised border detection in dermoscopy images [J].
Celebi, M. Emre ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Iyatomi, Hitoshi ;
Oka, Hiroshi ;
Chen, Xiaohe .
SKIN RESEARCH AND TECHNOLOGY, 2007, 13 (04) :454-462
[9]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373
[10]   Lesion border detection in dermoscopy images [J].
Celebi, M. Emre ;
Iyatomi, Hitoshi ;
Schaefer, Gerald ;
Stoecker, William V. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (02) :148-153