The Deep Underground Neutrino Experiment: The precision era of neutrino physics

被引:3
作者
Kemp, E. [1 ]
机构
[1] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
neutrino; DUNE; CP-phase;
D O I
10.1002/asna.201713417
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 10(3) km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.
引用
收藏
页码:993 / 999
页数:7
相关论文
共 11 条
[1]   Summary of the second workshop on liquid argon time projection chamber research and development in the United States [J].
Acciarri, R. ;
Adamowski, M. ;
Artrip, D. ;
Baller, B. ;
Bromberg, C. ;
Cavanna, F. ;
Carls, B. ;
Chen, H. ;
Deptuch, G. ;
Epprecht, L. ;
Dharmapalan, R. ;
Foreman, W. ;
Hahn, A. ;
Johnson, M. ;
Jones, B. J. P. ;
Junk, T. ;
Lang, K. ;
Lockwitz, S. ;
Marchionni, A. ;
Mauger, C. ;
Montanari, C. ;
Mufson, S. ;
Nessi, M. ;
Back, H. Olling ;
Petrillo, G. ;
Pordes, S. ;
Raaf, J. ;
Rebel, B. ;
Sinins, G. ;
Soderberg, M. ;
Spooner, N. J. C. ;
Stancari, M. ;
Strauss, T. ;
Terao, K. ;
Thorn, C. ;
Tope, T. ;
Toups, M. ;
Urheim, J. ;
Van de Water, R. ;
Wang, H. ;
Wasserman, R. ;
Weber, M. ;
Whittington, D. ;
Yang, T. .
JOURNAL OF INSTRUMENTATION, 2015, 10
[2]  
Acciarri R., 2015, ARXIV150301520V1
[3]   The GENIE neutrino Monte Carlo generator [J].
Andreopoulos, C. ;
Bell, A. ;
Bhattacharya, D. ;
Cavanna, F. ;
Dobson, J. ;
Dytman, S. ;
Gallagher, H. ;
Guzowski, P. ;
Hatcher, R. ;
Kehayias, P. ;
Meregaglia, A. ;
Naples, D. ;
Pearce, G. ;
Rubbia, A. ;
Whalley, M. ;
Yang, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 614 (01) :87-104
[4]  
Ayres D. S., 2004, FERMILABPROPOSAL0929
[5]  
Diwan M.V., 2004, FRASCATI PHYS SER, V35, P89
[6]   Updated fit to three neutrino mixing: status of leptonic CP violation [J].
Gonzalez-Garcia, M. C. ;
Matoni, Michele ;
Schwetz, Thomas .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11)
[7]   Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator) [J].
Huber, P ;
Lindner, A ;
Winter, W .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (03) :195-202
[8]   CP violation and neutrino oscillations [J].
Nunokawa, Hiroshi ;
Parke, Stephen ;
Valle, Jose W. F. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 60, NO 2, 2008, 60 (02) :338-402
[9]  
Rubbia C., 1977, The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors
[10]  
Senjanovic G, 2009, AIP CONF PROC, V1200, P131