ANTI-PERIODIC SOLUTIONS TO RAYLEIGH-TYPE EQUATIONS WITH TWO DEVIATING ARGUMENTS

被引:0
作者
Feng, Meiqiang [1 ]
Zhang, Xuemei [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Rayleigh equation; anti-periodic solution; deviating argument; PERIODIC-SOLUTIONS; KIND;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the Rayleigh equation with two deviating arguments x '' (t) + f(x' (t)) + g(1) (t, x(t - tau(1)(t))) + g(2)(t, x(t - tau(2)(t))) = e(t) is studied. By using Leray-Schauder fixed point theorem, we obtain the existence of anti-periodic solutions to this equation. The results are illustrated with an example, which can not be handled using previous results.
引用
收藏
页数:8
相关论文
共 30 条
[21]   Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J].
Lu, SP ;
Ge, WG .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :195-209
[22]   Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations with delays [J].
Lv, Xiang ;
Yan, Ping ;
Liu, Daojin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3593-3598
[23]  
Mawhin J., 1989, Applied Mathematical Sciences
[24]   Periodic solutions for a kind of Rayleigh equation with two deviating arguments [J].
Peng, Lequn ;
Liu, Bingwen ;
Zhou, Qiyuan ;
Huang, Lihong .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2006, 343 (07) :676-687
[25]   Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions [J].
Wang, Y ;
Shi, YM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (01) :56-69
[26]  
Wang Z. X., 1984, IT S, P12
[27]  
Yashizaw T., 1987, C MATH SOC J BOLYAI, V47, P1141
[28]   Existence and uniqueness of anti-periodic solutions for a kind of Rayleigh equation with two deviating arguments [J].
Yu, Yuehua ;
Shao, Jianying ;
Yue, Guangxue .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4689-4695
[29]  
Zeidler E., 1986, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-1-4612-4838-5
[30]  
计国君, 1996, [数学物理学报. A辑, Acta Mathematica Scientia], V16, P99