ANTI-PERIODIC SOLUTIONS TO RAYLEIGH-TYPE EQUATIONS WITH TWO DEVIATING ARGUMENTS

被引:0
作者
Feng, Meiqiang [1 ]
Zhang, Xuemei [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
关键词
Rayleigh equation; anti-periodic solution; deviating argument; PERIODIC-SOLUTIONS; KIND;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the Rayleigh equation with two deviating arguments x '' (t) + f(x' (t)) + g(1) (t, x(t - tau(1)(t))) + g(2)(t, x(t - tau(2)(t))) = e(t) is studied. By using Leray-Schauder fixed point theorem, we obtain the existence of anti-periodic solutions to this equation. The results are illustrated with an example, which can not be handled using previous results.
引用
收藏
页数:8
相关论文
共 30 条
[1]   HALF-STRING OSCILLATOR APPROACH TO STRING FIELD-THEORY (GHOST SECTOR-I) [J].
ABDURRAHMAN, A ;
ANTON, F ;
BORDES, J .
NUCLEAR PHYSICS B, 1993, 397 (1-2) :260-282
[2]   Boundary flows in general coset theories [J].
Ahn, C ;
Rim, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (13) :2509-2525
[3]   Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J].
Aizicovici, S ;
McKibben, M ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) :233-251
[4]  
Burton T. A., 2005, Stability and periodic solutions of ordinary and functional differential equations
[5]  
Cabada A, 2004, ADV DIFFER EQU-NY, V4, P291
[6]  
Chen HL, 1996, J COMPUT MATH, V14, P32
[7]   Anti-periodic solutions for fully nonlinear first-order differential equations [J].
Chen, Yuqing ;
Nieto, Juan J. ;
O'Regan, Donal .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (9-10) :1183-1190
[8]   Lacunary interpolation by antiperiodic trigonometric polynomials [J].
Delvos, FJ ;
Knoche, L .
BIT, 1999, 39 (03) :439-450
[9]   Simple and double eigenvalues of the Hill operator with a two-term potential [J].
Djakov, P ;
Mityagin, B .
JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) :70-104
[10]   Spectral gaps of the periodic Schrodinger operator when its potential is an entire function [J].
Djakov, P ;
Mityagin, B .
ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (03) :562-596