Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

被引:66
|
作者
Zhang, Duona [1 ]
Ding, Wenrui [2 ]
Zhang, Baochang [3 ]
Xie, Chunyu [3 ]
Li, Hongguang [2 ]
Liu, Chunhui [2 ]
Han, Jungong [4 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Unmanned Syst Res Inst, Beijing 100083, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4WA, England
基金
中国国家自然科学基金;
关键词
deep learning; automatic modulation classification; classifier fusion; convolutional neural network; long short-term memory;
D O I
10.3390/s18030924
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals
    Xu, Yu
    Li, Dezhi
    Wang, Zhenyong
    Guo, Qing
    Xiang, Wei
    WIRELESS NETWORKS, 2019, 25 (07) : 3735 - 3746
  • [42] Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction
    Swinney, Carolyn J.
    Woods, John C.
    AEROSPACE, 2021, 8 (03)
  • [43] Deep Learning Based Unmanned Aerial Vehicle Landcover Image Segmentation Method
    Liu W.
    Zhao L.
    Zhou Y.
    Zong S.
    Luo Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (02): : 221 - 229
  • [44] Accumulated Polar Feature-Based Deep Learning for Efficient and Lightweight Automatic Modulation Classification With Channel Compensation Mechanism
    Teng, Chieh-Fang
    Chou, Ching-Yao
    Chen, Chun-Hsiang
    Wu, An-Yeu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 15472 - 15485
  • [45] A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals
    Yu Xu
    Dezhi Li
    Zhenyong Wang
    Qing Guo
    Wei Xiang
    Wireless Networks, 2019, 25 : 3735 - 3746
  • [46] Automatic Modulation Classification Based on Deep Learning for Software-Defined Radio
    Wu, Peng
    Sun, Bei
    Su, Shaojing
    Wei, Junyu
    Zhao, Jinhui
    Wen, Xudong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [47] Radio Signal Automatic Modulation Classification based on Deep Learning and Expert Features
    Yao, Tianyao
    Chai, Yuan
    Wang, Shuai
    Miao, Xiaqing
    Bu, Xiangyuan
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1225 - 1230
  • [48] Transformers and deep CNNs for Unmanned Aerial Vehicles Detection
    Qi, Zhangyang
    Laplante, Jean-Francois
    Akhloufi, Moulay A.
    UNMANNED SYSTEMS TECHNOLOGY XXIV, 2022, 12124
  • [49] Automatic modulation classification with deep learning-based frequency selection filters
    Liu, Weisong
    Huang, Zhitao
    Li, Xueqiong
    Wang, Xiang
    Li, Baoguo
    ELECTRONICS LETTERS, 2020, 56 (21) : 1144 - 1145
  • [50] Deep Learning Based Automatic Modulation Classification in the Case of Carrier Phase Shift
    Yilmaz, Ramazan
    Pusane, Ali Emre
    2020 43RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2020, : 354 - 357