Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

被引:67
|
作者
Zhang, Duona [1 ]
Ding, Wenrui [2 ]
Zhang, Baochang [3 ]
Xie, Chunyu [3 ]
Li, Hongguang [2 ]
Liu, Chunhui [2 ]
Han, Jungong [4 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Unmanned Syst Res Inst, Beijing 100083, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4WA, England
基金
中国国家自然科学基金;
关键词
deep learning; automatic modulation classification; classifier fusion; convolutional neural network; long short-term memory;
D O I
10.3390/s18030924
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Learning-based Wildfire Tracking with Unmanned Aerial Vehicles
    Jia, Qiong
    Xin, Ming
    Hu, Xiaolin
    Chao, Haiyang
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3212 - 3217
  • [42] Multiscale Correlation Networks Based on Deep Learning for Automatic Modulation Classification
    Xiao, Jing
    Wang, Yufeng
    Zhang, Duona
    Ma, Qinyan
    Ding, Wenrui
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 633 - 637
  • [43] Automatic Modulation Classification Based on Constellation Density Using Deep Learning
    Kumar, Yogesh
    Sheoran, Manu
    Jajoo, Gaurav
    Yadav, Sandeep Kumar
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (06) : 1275 - 1278
  • [44] Multimodal attention-based deep learning for automatic modulation classification
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [45] Autocorrelation Convolution Networks Based on Deep Learning for Automatic Modulation Classification
    Zhang, Duona
    Ding, Wenrui
    Wang, Hongyu
    Zhang, Baochang
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1561 - 1565
  • [46] Dive Into Deep Learning Based Automatic Modulation Classification: A Disentangled Approach
    Shang, Xiaolei
    Hu, Honglin
    Li, Xiaoqiang
    Xu, Tianheng
    Zhou, Ting
    IEEE ACCESS, 2020, 8 : 113271 - 113284
  • [47] Deep Learning based Automatic Modulation Classification for Varying SNR Environment
    Xie, Xiaojuan
    Ni, Yanqin
    Peng, Shengliang
    Yao, Yu-Dong
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 18 - 22
  • [48] Active Perception Applied To Unmanned Aerial Vehicles Through Deep Reinforcement Learning
    Mateus, Matheus G.
    Grando, Ricardo B.
    Drews-Jr, Paulo L. J.
    2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE), 2022, : 342 - 347
  • [49] Learning Safe Recovery Trajectories with Deep Neural Networks for Unmanned Aerial Vehicles
    Khan, Arbaaz
    Hebert, Martial
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [50] Survey on Monocular Depth Estimation for Unmanned Aerial Vehicles using Deep Learning
    Florea, Horatiu
    Nedevschi, Sergiu
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, ICCP, 2022, : 319 - 326