Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

被引:67
|
作者
Zhang, Duona [1 ]
Ding, Wenrui [2 ]
Zhang, Baochang [3 ]
Xie, Chunyu [3 ]
Li, Hongguang [2 ]
Liu, Chunhui [2 ]
Han, Jungong [4 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Unmanned Syst Res Inst, Beijing 100083, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China
[4] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4WA, England
基金
中国国家自然科学基金;
关键词
deep learning; automatic modulation classification; classifier fusion; convolutional neural network; long short-term memory;
D O I
10.3390/s18030924
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Novel Cooperative Automatic Modulation Classification Using Unmanned Aerial Vehicles
    Yan, Xiao
    Rao, Xiaoxue
    Wang, Qian
    Wu, Hsiao-Chun
    Zhang, Yan
    Wu, Yiyan
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 28107 - 28117
  • [2] Ultralight Convolutional Neural Network for Automatic Modulation Classification in Internet of Unmanned Aerial Vehicles
    Guo, Lantu
    Wang, Yu
    Liu, Yuchao
    Lin, Yun
    Zhao, Haitao
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 20831 - 20839
  • [3] Deep-Learning-Based Aerial Image Classification for Emergency Response Applications using Unmanned Aerial Vehicles
    Kyrkou, Christos
    Theocharides, Theocharis
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 517 - 525
  • [4] Deep learning for unmanned aerial vehicles detection: A review
    Al-lQubaydhi, Nader
    Alenezi, Abdulrahman
    Alanazi, Turki
    Senyor, Abdulrahman
    Alanezi, Naif
    Alotaibi, Bandar
    Alotaibi, Munif
    Razaque, Abdul
    Hariri, Salim
    COMPUTER SCIENCE REVIEW, 2024, 51
  • [5] Unmanned Aerial Vehicle Classification and Detection Based on Deep Transfer Learning
    Meng, Wei
    Tia, Meng
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 280 - 285
  • [6] White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification
    Ravishankar, T. Nadana
    Ramprasath, M.
    Daniel, A.
    Selvarajan, Shitharth
    Subbiah, Priyanga
    Balusamy, Balamurugan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification
    T. Nadana Ravishankar
    M. Ramprasath
    A. Daniel
    Shitharth Selvarajan
    Priyanga Subbiah
    Balamurugan Balusamy
    Scientific Reports, 13
  • [8] Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles
    Tian, Jiwei
    Wang, Buhong
    Guo, Rongxiao
    Wang, Zhen
    Cao, Kunrui
    Wang, Xiaodong
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22): : 22399 - 22409
  • [9] Deep Learning based Automatic Signal Modulation Classification
    Lu, Jingyang
    Li, Yi
    Chen, Genshe
    Shen, Dan
    Tian, Xin
    Khanh Pham
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XII, 2019, 11017
  • [10] Deep Reinforcement Learning for Mapless Navigation of Unmanned Aerial Vehicles
    Grando, Ricardo B.
    de Jesus, Junior C.
    Drews-Jr, Paulo L. J.
    2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 335 - 340