Iterative Sampled Methods for Massive and Separable Nonlinear Inverse Problems

被引:3
作者
Chung, Julianne [1 ]
Chung, Matthias [1 ]
Slagel, J. Tanner [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
来源
SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2019 | 2019年 / 11603卷
基金
美国国家科学基金会;
关键词
Tikhonov regularization; Sampled methods; Variable projection; Kaczmarz methods; Super-resolution; Medical imaging and other applications; VARIABLE PROJECTION; LEAST-SQUARES; KACZMARZ; ALGORITHM;
D O I
10.1007/978-3-030-22368-7_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider iterative methods based on sampling for computing solutions to separable nonlinear inverse problems where the entire dataset cannot be accessed or is not available all-at-once. In such scenarios (e.g., when massive amounts of data exceed memory capabilities or when data is being streamed), solving inverse problems, especially nonlinear ones, can be very challenging. We focus on separable nonlinear problems, where the objective function is nonlinear in one (typically small) set of parameters and linear in another (larger) set of parameters. For the linear problem, we describe a limited-memory sampled Tikhonov method, and for the nonlinear problem, we describe an approach to integrate the limited-memory sampled Tikhonov method within a nonlinear optimization framework. The proposed method is computationally efficient in that it only uses available data at any iteration to update both sets of parameters. Numerical experiments applied to massive super-resolution image reconstruction problems show the power of these methods.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 23 条
[1]   Generalized row-action methods for tomographic imaging [J].
Andersen, Martin S. ;
Hansen, Per Christian .
NUMERICAL ALGORITHMS, 2014, 67 (01) :121-144
[2]  
[Anonymous], 2010, DISCRETE INVERSE PRO, DOI DOI 10.1137/1.9780898718836
[3]  
[Anonymous], 2017, ARXIV170207367
[4]  
Berisha S., 2015, NUMER LINEAR ALGEBRA
[5]  
Bjorck A, 1996, NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[6]   Numerical methods for coupled super-resolution [J].
Chung, Julianne ;
Haber, Eldad ;
Nagy, James .
INVERSE PROBLEMS, 2006, 22 (04) :1261-1272
[7]   AN EFFICIENT ITERATIVE APPROACH FOR LARGE-SCALE SEPARABLE NONLINEAR INVERSE PROBLEMS [J].
Chung, Julianne ;
Nagy, James G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) :4654-4674
[8]   Constrained variable projection method for blind deconvolution [J].
Cornelio, A. ;
Piccolomini, E. Loli ;
Nagy, J. G. .
2ND INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP 2012), 2012, 386
[9]  
Escalante R, 2011, FUND ALGORITHMS, V8, P1
[10]   Separable nonlinear least squares: the variable projection method and its applications [J].
Golub, G ;
Pereyra, V .
INVERSE PROBLEMS, 2003, 19 (02) :R1-R26