Constraint Algebra of Modified Gravity Theories for 2+1 dimensions

被引:2
作者
Rosas-Rodriguez, Ricardo [1 ]
机构
[1] UTM, Inst Fis & Matemat, Huajuapan De Leon 69000, Oaxaca, Mexico
来源
IX WORKSHOP OF THE GRAVITATION AND MATHEMATICAL PHYSICS DIVISION OF THE MEXICAN PHYSICAL SOCIETY | 2012年 / 1473卷
关键词
Modified gravity theories; Asktekar's variables;
D O I
10.1063/1.4748561
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A certain class of modified gravity theories were recently introduced by Krasnov under the name of "non-metric gravity". This theories are interesting on the classical level, since they do not introduce any new degrees o freedom. Krasnov showed that the constraints of this theories form a first-class algebra for 3+1 dimensions. In this note we review the case for 2+1 dimensions.
引用
收藏
页码:248 / 254
页数:7
相关论文
共 13 条
[1]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[2]   Note on non-metric gravity [J].
Bengtsson, Ingemar .
MODERN PHYSICS LETTERS A, 2007, 22 (22) :1643-1649
[3]   SELF-DUAL 2-FORMS AND GRAVITY [J].
CAPOVILLA, R ;
DELL, J ;
JACOBSON, T ;
MASON, L .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :41-57
[4]  
Krasnov K., HEPTH0611182
[5]   Non-metric gravity: a status report [J].
Krasnov, Kirill .
MODERN PHYSICS LETTERS A, 2007, 22 (40) :3013-3026
[6]   Deformations of the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity [J].
Krasnov, Kirill .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[7]   Non-metric gravity: II. Spherically symmetric solution, missing mass and redshifts of quasars [J].
Krasnov, Kirill ;
Shtanov, Yuri .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (02)
[8]   Non-metric gravity: I. Field equations [J].
Krasnov, Kirill .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (02)
[9]   ACTIONS FOR GRAVITY, WITH GENERALIZATIONS - A REVIEW [J].
PELDAN, P .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (05) :1087-1132
[10]   SEPARATION OF EINSTEINIAN SUBSTRUCTURES [J].
PLEBANSKI, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (12) :2511-2520