A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries

被引:17
作者
Abdulle, Assyr [1 ]
Budac, Ondrej [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, ANMC, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/j.crma.2015.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Petrov-Galerkin reduced basis (RB) approximation for the parameterized Stokes equation. Our method, which relies on a reduced solution space and a parameter-dependent test space, is shown to be stable (in the sense of Babuska) and algebraically stable '(a bound on the condition number of the online system can be established). Compared to other stable RB methods that can also be shown to be algebraically stable, our approach is among those with the smallest online time cost and it has general applicability to linear non-coercive problems without assuming a saddle-point structure. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:641 / 645
页数:5
相关论文
共 11 条
[1]   AN ADAPTIVE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR STOKES FLOW IN POROUS MEDIA [J].
Abdulle, A. ;
Budac, O. .
MULTISCALE MODELING & SIMULATION, 2015, 13 (01) :256-290
[2]  
Abdulle A., 2014, REDUCED BASIS FINITE
[3]   Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations [J].
Carlberg, Kevin ;
Bou-Mosleh, Charbel ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (02) :155-181
[4]   DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS [J].
Dahmen, Wolfgang ;
Plesken, Christian ;
Welper, Gerrit .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03) :623-663
[5]   CERTIFIED REDUCED BASIS METHODS FOR PARAMETRIZED SADDLE POINT PROBLEMS [J].
Gerner, Anna-Lena ;
Veroy, Karen .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :A2812-A2836
[6]   A natural-norm Successive Constraint Method for inf-sup lower bounds [J].
Huynh, D. B. P. ;
Knezevic, D. J. ;
Chen, Y. ;
Hesthaven, J. S. ;
Patera, A. T. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (29-32) :1963-1975
[7]   A reduced basis element method for the steady Stokes problem [J].
Lovgren, Alf Emil ;
Maday, Yvon ;
Ronquist, Einar M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (03) :529-552
[8]  
Rovas D.V., 2003, THESIS MIT
[9]   Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations [J].
Rozza, G. ;
Huynh, D. B. P. ;
Patera, A. T. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2008, 15 (03) :229-275
[10]   Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants [J].
Rozza, Gianluigi ;
Huynh, D. B. Phuong ;
Manzoni, Andrea .
NUMERISCHE MATHEMATIK, 2013, 125 (01) :115-152