The Average Eccentricity of Sierpinski Graphs

被引:59
作者
Hinz, Andreas M. [1 ]
Parisse, Daniele [2 ]
机构
[1] Fernuniv, D-58084 Hagen, Germany
[2] EADS Deutschland GmbH, D-81663 Munich, Germany
关键词
Sierpinski graphs; Eccentricity; Average eccentricity; Tower of Hanoi; Hanoi graphs; Integer sequences; METRIC PROPERTIES; HANOI; TOWER; GASKET;
D O I
10.1007/s00373-011-1076-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the eccentricity of an arbitrary vertex, the average eccentricity and its standard deviation for all Sierpinski graphs S-p(n). Special cases are the graphs S-2(n), which are isomorphic to the state graphs of the Chinese Rings puzzle with n rings and the graphs S-3(n) isomorphic to the Hanoi graphs H-3(n) representing the Tower of Hanoi puzzle with 3 pegs and n discs.
引用
收藏
页码:671 / 686
页数:16
相关论文
共 22 条
[1]  
Afriat S.N., 1982, The Ring of Linked Rings
[2]  
[Anonymous], 1990, Distance in Graphs
[3]  
[Anonymous], 1994, FDN COMPUTER SCI
[4]  
Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
[5]  
Hinz A. M., 2011, BEHAV NEURO IN PRESS
[6]  
Hinz A. M., 2011, DISCRETE MA IN PRESS
[7]   Metric properties of the Tower of Hanoi graphs and Stem's diatomic sequence [J].
Hinz, AM ;
Klavzar, S ;
Milutinovic, U ;
Parisse, D ;
Petr, C .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) :693-708
[8]   THE AVERAGE DISTANCE ON THE SIERPINSKI GASKET [J].
HINZ, AM ;
SCHIEF, A .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) :129-138
[9]  
Hinz AM, 1999, ALGEBRAS AND COMBINATORICS, P277
[10]   PASCAL TRIANGLE AND THE TOWER OF HANOI [J].
HINZ, AM .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (06) :538-544