GLOBAL WELL-POSEDNESS IN UNIFORMLY LOCAL SPACES FOR THE CAHN-HILLIARD EQUATION IN R3

被引:10
作者
Zelik, Sergey [1 ]
Pennant, Jon [1 ]
机构
[1] Univ Surrey, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Cahn-Hilliard equation; unbounded domains; infinite-energy solutions; SPATIALLY NONDECAYING SOLUTIONS; REACTION-DIFFUSION SYSTEMS; EXPONENTIAL ATTRACTORS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS;
D O I
10.3934/cpaa.2013.12.461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the infinite-energy solutions of the Cahn-Hilliard equation in the whole 3D space in uniformly local phase spaces. In particular, we establish the global existence of solutions for the case of regular potentials of arbitrary polynomial growth and for the case of sufficiently strong singular potentials. For these cases, the uniqueness and further regularity of the obtained solutions are proved as well. We discuss also the analogous problems for the case of the so-called Cahn-Hilliard-Oono equation where, in addition, the dissipativity of the associated solution semigroup is established
引用
收藏
页码:461 / 480
页数:20
相关论文
共 39 条
  • [21] On the 3D Cahn-Hilliard equation with inertial term
    Grasselli, Maurizio
    Schimperna, Giulio
    Segatti, Antonio
    Zelik, Sergey
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (02) : 371 - 404
  • [22] On the 2D Cahn-Hilliard Equation with Inertial Term
    Grasselli, Maurizio
    Schimperna, Giulio
    Zelik, Sergey
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) : 137 - 170
  • [23] Kalantarov V., 1987, ZAP NAUCHN SEM LENIN, V163, P66
  • [24] Anomalous scaling for three-dimensional Cahn-Hilliard fronts
    Korvola, T
    Kupiainen, A
    Taskinen, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (08) : 1077 - 1115
  • [25] Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions
    Miranville, A
    Zelik, S
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (06) : 709 - 735
  • [26] Robust exponential attractors for Cahn-Hilliard type equations with singular potentials
    Miranville, A
    Zelik, S
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (05) : 545 - 582
  • [27] Miranville A, 2008, HBK DIFF EQUAT EVOL, V4, P103, DOI 10.1016/S1874-5717(08)00003-0
  • [28] Doubly nonlinear Cahn-Hilliard-Gurtin equations
    Miranville, A.
    Zelik, S.
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (02) : 315 - 360
  • [29] Miranville A, 2011, J APPL ANAL COMPUT, V1, P523
  • [30] Novick-Cohen A., 1998, ADV MATH SCI APPL, V8, P965