Sensor Fusion for Motion Estimation of Mobile Robots with Compensation for Out-of-Sequence Measurements

被引:0
|
作者
Berntorp, Karl [1 ]
Arzen, Karl-Erik [1 ]
Robertsson, Anders [1 ]
机构
[1] Lund Univ, Dept Automat Control, Lund, Sweden
来源
2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS) | 2011年
关键词
Extended Kalman filter; out-of-sequence; localization; estimation; mobile robotics; sensor fusion; TRACKING;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The position and orientation estimation problem for mobile robots is approached by fusing measurements from inertial sensors, wheel encoders, and a camera. The sensor fusion approach is based on the standard extended Kalman filter, which is modified to handle measurements from the camera with unknown prior delay. A real-time implementation is done on a four-wheeled omni-directional mobile robot, using a dynamic model with 11 states. The algorithm is analyzed and validated with simulations and experiments.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [21] Robust Slip-Aware Fusion for Mobile Robots State Estimation
    Hashemi, Ehsan
    He, Xingkang
    Johansson, Karl H.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 7896 - 7903
  • [22] Fault Detection in Mobile Robots using Sensor Fusion
    Abid, Anam
    Khan, Muhammad Tahir
    de Silva, C. W.
    10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015), 2015, : 8 - 13
  • [23] An Innovative Sensor Fusion Algorithm for Motion Tracking With On-Line Bias Compensation: Application to Joint Angles Estimation in Yoga
    Truppa, Luigi
    Bergamini, Elena
    Garofalo, Pietro
    Costantini, Marta
    Fiorentino, Carmelo
    Vannozzi, Giuseppe
    Sabatini, Angelo Maria
    Mannini, Andrea
    IEEE SENSORS JOURNAL, 2021, 21 (19) : 21285 - 21294
  • [24] Several Methods of Sensor Fusion for Vision Tracking in Mobile Robots
    Bahn, Wook
    Lee, Tae-Jae
    Jang, Byung-Moon
    Chang, Ji-Ho
    Cho, Jaeil
    Cho, Dong-Il Dan
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAL), 2012, : 429 - 432
  • [25] Multi-ultrasonic sensor fusion for autonomous mobile robots
    Yi, Z
    Khing, HY
    Seng, CC
    Wei, ZX
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS IV, 2000, 4051 : 314 - 321
  • [26] A Modified Bayesian Framework for Multi-Sensor Target Tracking with Out-of-Sequence-Measurements
    Shi, Yifang
    Qayyum, Sundas
    Memon, Sufyan Ali
    Khan, Uzair
    Imtiaz, Junaid
    Ullah, Ihsan
    Dancey, Darren
    Nawaz, Raheel
    SENSORS, 2020, 20 (14) : 1 - 18
  • [27] Motion Planning for Mobile Robots Using Uncertain Obstacle Estimation
    Gyenes, Zoltan
    Pajkos, Barnabas
    Boloni, Ladislau
    Szadeczky-Kardoss, Emese Gincsaine
    IEEE ACCESS, 2024, 12 : 16856 - 16867
  • [28] Sensor fusion algorithms for encoder resolution enhancement in educational mobile robots
    Su, Juing-Huei
    Lee, Chyi-Shyong
    Chen, Chao-Wei
    2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS), 2016,
  • [29] Sensor Fusion and Decision-making in the Cooperative Search by Mobile Robots
    Matzliach, Barouch
    Ben-Gal, Irad
    Kagan, Evgeny
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2020, : 119 - 126
  • [30] An experimental implementation of sensor fusion for mobile robots based on Kalman filtering
    Antonelli, G
    Chiaverini, S
    Costantini, S
    ROBOTICS: TRENDS, PRINCIPLES AND APPLICATIONS, VOL 15, 2004, 15 : 479 - 484