Generalized Lie bialgebroids and Jacobi structures

被引:68
作者
Iglesias, D [1 ]
Marrero, JC [1 ]
机构
[1] Univ La Laguna, Fac Matemat, Dept Matemat Fundamental, Tenerife, Canary Islands, Spain
关键词
Jacobi manifolds; Poisson manifolds; Lie algebroids; Lie bialgebroids; triangular Lie bialgebroids; Lie bialgebras;
D O I
10.1016/S0393-0440(01)00032-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from a generalized Lie bialgebroid and, as a consequence, we deduce a duality theorem. Finally, some special classes of generalized Lie bialgebroids are considered: triangular generalized Lie bialgebroids and generalized Lie bialgebras. (C) 2001 Elsevier Science BN. All rights reserved.
引用
收藏
页码:176 / 199
页数:24
相关论文
共 31 条
[1]  
BHASKARA KH, 1988, RES NOTES MATH, V174
[2]  
COSTE A, 1987, GROUPOIDES SYMPLEC A, V2, P1
[3]   DIRAC MANIFOLDS [J].
COURANT, TJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :631-661
[4]  
DAZORD P, 1991, J MATH PURE APPL, V70, P101
[5]  
de Leon M., 1999, LICHNEROWICZ JACOBI
[6]   On the geometric quantization of Jacobi manifolds [J].
deLeon, M ;
Marrero, JC ;
Padron, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6185-6213
[7]  
Drinfeld V., 1983, Soviet Math. Dokl., V27, P68
[8]  
DRINFELD VG, 1986, P ICM BERKELEY, V1, P789
[9]   THE LIE-ALGEBRA STRUCTURE OF DEGENERATE HAMILTONIAN AND BI-HAMILTONIAN SYSTEMS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04) :1082-1104
[10]   Tangent lifts of Poisson and related structures [J].
Grabowski, J ;
Urbanski, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :6743-6777