Experimental evaluation of parameter identification schemes on a direct-drive robot

被引:13
作者
Chavez-Olivares, Cesar A. [1 ]
Reyes-Cortes, Fernando [2 ]
Gonzalez-Galvan, Emilio J.
Mendoza-Gutierrez, Marco O. [3 ]
Bonilla-Gutierrez, Isela [4 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ingn, Ctr Invest & Estudios Posgrad, San Luis Potosi 78290, Mexico
[2] Benemerita Univ Autonoma Puebla, Grp Robot, Puebla, Mexico
[3] Univ Sonora, Dept Invest Fis, Hermosillo 83000, Sonora, Mexico
[4] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi 78290, Mexico
关键词
Direct-drive robot; identification schemes; regression models; least squares algorithm; INERTIAL PARAMETERS; INDUSTRIAL ROBOTS; MODEL; FRICTION; DYNAMICS;
D O I
10.1177/0959651812456795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic and friction parameters of a robot are used in advanced control schemes, and their accuracy significantly affects their performance. These parameters can also be used for a realistic simulation. In principle, the numerical value of the parameters could be obtained via computer-aided design analysis but inevitable assembly and manufacturing errors exist. Direct measurement is not a realistic option because the complex nature of the system would involve an intense time-consuming effort. Alternatively, we can deduce the values of the parameters by observing the natural response of the system under appropriate experimental conditions, that is, by using identification schemes. This article presents the experimental evaluation of five identification schemes used to obtain the dynamic and friction parameters of a two-degree-of-freedom, direct-drive robot. We assume that the dynamic and friction parameters are totally unknown but, by design, the dynamic model is fully known. We consider the schemes based on the dynamic regression model, filtered-dynamic regression model, supplied-energy regression model, power regression model, and filtered-power regression model. The article presents a comparison between experimental and simulated robot responses, which enable us to verify the accuracy of each regression model.
引用
收藏
页码:1419 / 1431
页数:13
相关论文
共 28 条
[1]  
Armstrong B., 1987, Proceedings of the 1987 IEEE International Conference on Robotics and Automation (Cat. No.87CH2413-3), P1131
[2]  
Asada H., 1987, DIRECT DRIVE ROBOTS
[3]  
Astrom K.J., 2008, Adaptive control, V2 edn
[4]  
Åström KJ, 2008, IEEE CONTR SYST MAG, V28, P101, DOI 10.1109/MCS.2008.929425
[5]   ESTIMATION OF INERTIAL PARAMETERS OF MANIPULATOR LOADS AND LINKS [J].
ATKESON, CG ;
AN, CH ;
HOLLERBACH, JM .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1986, 5 (03) :101-119
[6]   A comparison between direct and indirect dynamic parameter identification methods in industrial robots [J].
Benimeli, Francesc ;
Mata, Vicente ;
Valero, Francisco .
ROBOTICA, 2006, 24 (579-590) :579-590
[7]   Dynamic identification of Staubli RX-60 robot using PSO and LS methods [J].
Bingul, Zafer ;
Karahan, Oguzhan .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :4136-4149
[8]  
Canudas de Wit C., 1990, P IFAC C TALL, P178
[9]  
Choi JS, 2011, IEEE ASME INT C ADV, P373, DOI 10.1109/AIM.2011.6027068
[10]   A NEW MODEL FOR CONTROL OF SYSTEMS WITH FRICTION [J].
DEWIT, CC ;
OLSSON, H ;
ASTROM, KJ ;
LISCHINSKY, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) :419-425