Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy

被引:83
作者
Hyer, Holden [1 ]
Zhou, Le [1 ]
Park, Sharon [1 ]
Gottsfritz, Guilherme [1 ]
Benson, George [1 ]
Tolentino, Bjorn [1 ]
McWilliams, Brandon [2 ]
Cho, Kyu [2 ]
Sohn, Yongho [1 ]
机构
[1] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
[2] CDCC Army Res Lab, Aberdeen Proving Ground, MD USA
关键词
Additive Manufacturing; Aluminum Alloys; Microstructure; Solidification; MECHANICAL-PROPERTIES; MELTED ALSI10MG; MICROSTRUCTURE; PARAMETERS; STRENGTH; HARDNESS;
D O I
10.1007/s13632-020-00659-w
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
We examine the microstructural characteristics of LPBF AlSi10Mg produced by using a wide range of LPBF processing parameters with independently varied laser power, hatch spacing, scan speed, slice thickness, and the normalized energy density. The lower energy density produced lack of fusion flaws from residual interparticle spacing, while the higher energy density produced spherical pores from trapped gas. The highest density (> 99%) samples were produced by using an energy density of 32 to 54 J/mm(3). Within this energy density range, use of smaller slice thicknesses increased the processing window that would produce dense AlSi10Mg samples. A cellular structure, consisting of Al-Si eutectic and alpha-Al (fcc) matrix, within melt pools was quantified in size to determine the cooling rate of 10(5)to 10(7) K/s. This sub-grain cellular structure was found to decrease in size with increasing scan speed and increasing slice thickness.
引用
收藏
页码:484 / 502
页数:19
相关论文
共 38 条
[1]   The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J].
Aboulkhair, Nesma T. ;
Maskery, Ian ;
Tuck, Chris ;
Ashcroft, Ian ;
Everitt, Nicola M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 667 :139-146
[2]   On the formation of A1Si10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties [J].
Aboulkhair, Nesma T. ;
Maskery, Ian ;
Tuck, Chris ;
Ashcroft, Ian ;
Everitt, Nicola M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 230 :88-98
[3]  
[Anonymous], SDS ALSI10MG POWD SL
[4]  
Baker HK, 1992, ICFA CONT EDUC SER, P1
[5]   High Power Selective Laser Melting (HP SLM) of Aluminum Parts [J].
Buchbinder, D. ;
Schleifenbaum, H. ;
Heidrich, S. ;
Meiners, W. ;
Bueltmann, J. .
LASERS IN MANUFACTURING 2011: PROCEEDINGS OF THE SIXTH INTERNATIONAL WLT CONFERENCE ON LASERS IN MANUFACTURING, VOL 12, PT A, 2011, 12 :271-278
[6]   Process optimisation of selective laser melting using energy density model for nickel based superalloys [J].
Carter, L. N. ;
Wang, X. ;
Read, N. ;
Khan, R. ;
Aristizabal, M. ;
Essa, K. ;
Attallah, M. M. .
MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (07) :657-661
[7]  
Davis J.R., 2001, ALUMINUM ALUMINUM AL
[8]   Metal Additive Manufacturing: A Review [J].
Frazier, William E. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :1917-1928
[9]   Effect of the T6 heat treatment on corrosion behavior of additive manufactured and gravity cast AlSi10Mg alloy [J].
Girelli, Luca ;
Tocci, Marialaura ;
Conte, Manuela ;
Giovanardi, Roberto ;
Veronesi, Paolo ;
Gelfi, Marcello ;
Pola, Annalisa .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (10) :1808-1816
[10]   Laser additive manufacturing of metallic components: materials, processes and mechanisms [J].
Gu, D. D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) :133-164