Nonconformal viscous anisotropic hydrodynamics

被引:45
作者
Bazow, Dennis [1 ]
Heinz, Ulrich [1 ]
Martinez, Mauricio [1 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
来源
PHYSICAL REVIEW C | 2015年 / 91卷 / 06期
关键词
VISCOSITY; DYNAMICS;
D O I
10.1103/PhysRevC.91.064903
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We generalize the derivation of viscous anisotropic hydrodynamics from kinetic theory to allow for nonzero particle masses. The macroscopic theory is obtained by taking moments of the Boltzmann equation after expanding the distribution function around a spheroidally deformed local momentum distribution whose form has been generalized by the addition of a scalar field that accounts nonperturbatively (i.e., already at leading order) for bulk viscous effects. Hydrodynamic equations for the parameters of the leading-order distribution function and for the residual (next-to-leading order) dissipative flows are obtained from the three lowest moments of the Boltzmann equation. The approach is tested for a system undergoing (0 + 1)-dimensional boost-invariant expansion for which the exact solution of the Boltzmann equation in the relaxation time approximation is known. Nonconformal viscous anisotropic hydrodynamics is shown to approximate this exact solution more accurately than any other known hydrodynamic approximation.
引用
收藏
页数:11
相关论文
共 38 条
[1]   RELATIVISTIC GRAD POLYNOMIALS [J].
ANDERSON, JL .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (07) :1116-1119
[2]   THERMAL EQUILIBRATION IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS [J].
BAYM, G .
PHYSICS LETTERS B, 1984, 138 (1-3) :18-22
[3]   Second order dissipative fluid dynamics from kinetic theory [J].
Betz, B. ;
Denicol, G. S. ;
Koide, T. ;
Molnar, E. ;
Niemi, H. ;
Rischke, D. H. .
HCBM 2010 - INTERNATIONAL WORKSHOP ON HOT AND COLD BARYONIC MATTER, 2011, 13
[4]   Complete second-order dissipative fluid dynamics [J].
Betz, B. ;
Henkel, D. ;
Rischke, D. H. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (06)
[5]   Particle spectra in Pb-Pb collisions at √sNN=2.76 TeV [J].
Bozek, Piotr ;
Wyskiel-Piekarska, Iwona .
PHYSICAL REVIEW C, 2012, 85 (06)
[6]   Flow and interferometry in (3+1)-dimensional viscous hydrodynamics [J].
Bozek, Piotr .
PHYSICAL REVIEW C, 2012, 85 (03)
[7]   Bulk and shear viscosities of matter created in relativistic heavy-ion collisions [J].
Bozek, Piotr .
PHYSICAL REVIEW C, 2010, 81 (03)
[8]   Derivation of fluid dynamics from kinetic theory with the 14-moment approximation [J].
Denicol, G. S. ;
Molnar, E. ;
Niemi, H. ;
Rischke, D. H. .
EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (11) :1-15
[9]   Derivation of transient relativistic fluid dynamics from the Boltzmann equation [J].
Denicol, G. S. ;
Niemi, H. ;
Molnar, E. ;
Rischke, D. H. .
PHYSICAL REVIEW D, 2012, 85 (11)
[10]   Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory [J].
Denicol, G. S. ;
Koide, T. ;
Rischke, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)