Nanoantenna-Enabled Midwave Infrared Focal Plane Arrays

被引:5
|
作者
Peters, David W. [1 ]
Reinke, Charles M. [1 ]
Davids, Paul S. [1 ]
Klem, John F. [1 ]
Leonhardt, Darin [1 ]
Wendt, Joel R. [1 ]
Kim, Jin K. [1 ]
Samora, Sally [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII, PTS 1 AND 2 | 2012年 / 8353卷
关键词
Midwave; infrared; focal plane array; detector; plasmon; nanoantenna;
D O I
10.1117/12.919473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the effects of integrating a nanoantenna to a midwave infrared (MWIR) focal plane array (FPA). We model an antenna-coupled photodetector with a nanoantenna fabricated in close proximity to the active material of a photodetector. This proximity allows us to take advantage of the concentrated plasmonic fields of the nanoantenna. The role of the nanoantenna is to convert free-space plane waves into surface plasmons bound to a patterned metal surface. These plasmonic fields are concentrated in a small volume near the metal surface. Field concentration allows for a thinner layer of absorbing material to be used in the photodetector design and promises improvements in cutoff wavelength and dark current (higher operating temperature). While the nanoantenna concept may be applied to any active photodetector material, we chose to integrate the nanoantenna with an InAsSb photodiode. The geometry of the nanoantenna-coupled detector is optimized to give maximal carrier generation in the active region of the photodiode, and fabrication processes must be altered to accommodate the nanoantenna structure. The intensity profiles and the carrier generation rates in the photodetector active layers are determined by finite element method simulations, and iteration between optical nanoantenna simulation and detector modeling is used to optimize the device structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Mid- and far-infrared hybrid focal plane arrays for astronomy
    Herter, T
    Hayward, TL
    Houck, JR
    Seib, DA
    Lin, WN
    INFRARED ASTRONOMICAL INSTRUMENTATION, PTS 1-2, 1998, 3354 : 109 - 115
  • [42] Enhanced quantum well infrared photodetector focal plane arrays for space applications
    Nedelcu, Alexandru
    Gueriaux, Vincent
    Bazin, Alexandre
    Dua, Lydie
    Berurier, Arnaud
    Costard, Eric
    Bois, Philippe
    Marcadet, Xavier
    INFRARED PHYSICS & TECHNOLOGY, 2009, 52 (06) : 412 - 418
  • [43] PtSi infrared focal plane arrays and thermovision systems based on them.
    Agranov, GA
    Nesterov, VK
    Sergeev, DN
    Shtam, AI
    Timofeev, VO
    Ivanov, VD
    Tihomirov, SB
    PHOTONICS FOR TRANSPORTATION, 1999, 3901 : 144 - 151
  • [44] Performance of 320x240 uncooled bolometer-type infrared focal plane arrays
    Tanaka, Y
    Tanaka, A
    Iida, K
    Sasaki, T
    Tohyama, S
    Akira, AB
    Kawahara, A
    Kurasina, S
    Endoh, T
    Kawano, K
    Okuyama, K
    Egashira, K
    Aoki, H
    Oda, N
    INFRARED TECHNOLOLGY AND APPLICATIONS XXIX, 2003, 5074 : 414 - 424
  • [45] Correction Technology of HgCdTe Short-Wave Infrared Focal Plane Arrays
    Chen Jianjun
    Cui Jicheng
    Liu Jianan
    Liu Jianli
    Yao Xuefeng
    Yang Jin
    Sun Ci
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [46] Quantification and Modeling of RMS Noise Distributions in HDVIP® Infrared Focal Plane Arrays
    Strong, Roger L.
    Kinch, Michael A.
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (08) : 2824 - 2830
  • [47] Micro-Camera and Micro-Spectrometer designs adapted to large infrared focal plane arrays
    Guerineau, Nicolas
    Druart, Guillaume
    de la Barriere, Florence
    Gillard, Frederic
    Rommeluere, Sylvain
    Primot, Jerome
    Deschamps, Joel
    Taboury, Jean
    Fendler, Manuel
    MICRO-OPTICS 2010, 2010, 7716
  • [48] Micro-optic integration with focal plane arrays
    Motamedi, ME
    Tennant, WE
    Sankur, HO
    Melendes, R
    Gluck, NS
    Park, S
    Arias, JM
    Bajaj, J
    Pasko, JG
    McLevige, WV
    Zandian, M
    Hall, RL
    Richardson, PD
    OPTICAL ENGINEERING, 1997, 36 (05) : 1374 - 1381
  • [49] Laser fabrication of lead selenide infrared focal plane array devices
    Harrison, Joel T.
    Gupta, Mool C.
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [50] Infrared MBE-Grown HgCdTe Focal Plane Arrays and Cameras After High Energy Neutron Irradiation
    Yong Chang
    Silviu Velicu
    Sushant Sonde
    Thomas Kroc
    Journal of Electronic Materials, 2020, 49 : 7000 - 7006