Nanoantenna-Enabled Midwave Infrared Focal Plane Arrays

被引:5
|
作者
Peters, David W. [1 ]
Reinke, Charles M. [1 ]
Davids, Paul S. [1 ]
Klem, John F. [1 ]
Leonhardt, Darin [1 ]
Wendt, Joel R. [1 ]
Kim, Jin K. [1 ]
Samora, Sally [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII, PTS 1 AND 2 | 2012年 / 8353卷
关键词
Midwave; infrared; focal plane array; detector; plasmon; nanoantenna;
D O I
10.1117/12.919473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the effects of integrating a nanoantenna to a midwave infrared (MWIR) focal plane array (FPA). We model an antenna-coupled photodetector with a nanoantenna fabricated in close proximity to the active material of a photodetector. This proximity allows us to take advantage of the concentrated plasmonic fields of the nanoantenna. The role of the nanoantenna is to convert free-space plane waves into surface plasmons bound to a patterned metal surface. These plasmonic fields are concentrated in a small volume near the metal surface. Field concentration allows for a thinner layer of absorbing material to be used in the photodetector design and promises improvements in cutoff wavelength and dark current (higher operating temperature). While the nanoantenna concept may be applied to any active photodetector material, we chose to integrate the nanoantenna with an InAsSb photodiode. The geometry of the nanoantenna-coupled detector is optimized to give maximal carrier generation in the active region of the photodiode, and fabrication processes must be altered to accommodate the nanoantenna structure. The intensity profiles and the carrier generation rates in the photodetector active layers are determined by finite element method simulations, and iteration between optical nanoantenna simulation and detector modeling is used to optimize the device structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Nanoantenna-Enabled Midwave Infrared Detection
    Peters, David W.
    Leonhardt, Darin
    Reinke, Charles M.
    Kim, Jin K.
    Wendt, Joel R.
    Davids, Paul S.
    Klem, John F.
    INFRARED TECHNOLOGY AND APPLICATIONS XXXIX, 2013, 8704
  • [2] Advanced thermoelectrically cooled midwave HgCdTe focal plane arrays
    Muren Chu
    S. Mesropian
    S. Terterian
    H. K. Gurgenian
    M. Pauli
    Journal of Electronic Materials, 2004, 33 : 609 - 614
  • [3] Advanced thermoelectrically cooled midwave HgCdTe focal plane arrays
    Chu, M
    Mesropian, S
    Terterian, S
    Gurgenian, HK
    Pauli, M
    JOURNAL OF ELECTRONIC MATERIALS, 2004, 33 (06) : 609 - 614
  • [4] Uncooled infrared focal plane arrays
    Kimata, Masafumi
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (01) : 4 - 12
  • [5] Random laser speckle based modulation transfer function measurement of midwave infrared focal plane arrays
    Barnard, Kenneth J.
    Anisimov, Igor
    Scheihing, John E.
    OPTICAL ENGINEERING, 2012, 51 (08)
  • [6] Quantum-dot infrared photodetectors and focal plane arrays
    Razeghi, Manijeh
    Lim, Ho-Chul
    Tsao, Stanley
    Taguchi, Maho
    Zhang, Wei
    Quivy, Alain Andre
    INFRARED TECHNOLOGY AND APPLICATIONS XXXII, PTS 1AND 2, 2006, 6206
  • [7] Scene based techniques for nonuniformity correction of infrared focal plane arrays
    Tzimopoulou, S
    Lettington, AH
    INFRARED TECHNOLOGY AND APPLICATIONS XXIV, PTS 1-2, 1998, 3436 : 172 - 183
  • [8] Silicon infrared focal plane arrays
    Kimata, M
    Yagi, H
    Ueno, M
    Nakanishi, J
    Ishikawa, T
    Nakaki, Y
    Kawai, M
    Endo, K
    Kosasayama, Y
    Ohota, Y
    Sugino, T
    Sone, T
    PHOTODETECTORS: MATERIALS AND DEVICES VI, 2001, 4288 : 286 - 297
  • [9] Demonstration of Fabricated Midwave Infrared InAs/GaSb Type- II Superlattice-based Focal Plane Arrays
    Kumari, K. C. Goma
    Rawool, H. M.
    Chakrabarti, S.
    DEFENCE SCIENCE JOURNAL, 2017, 67 (02) : 149 - 153
  • [10] Ultimate performance of new infrared HgCdTe focal plane arrays
    Osipov, VV
    Ponomarenko, VP
    Selyakov, AY
    INTERNATIONAL CONFERENCE ON PHOTOELECTRONICS AND NIGHT VISION DEVICES, 1999, 3819 : 16 - 31