On the linear convergence rates of exchange and continuous methods for total variation minimization

被引:18
作者
Flinth, Axel [3 ,4 ]
de Gournay, Frederic [1 ,2 ]
Weiss, Pierre [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, IMT, Toulouse, France
[2] Univ Toulouse, CNRS, ITAV, Toulouse, France
[3] Univ Gothenburg, Math Sci, Gothenburg, Sweden
[4] Chalmers Univ Technol, Gothenburg, Sweden
关键词
Total variation minimization; Inverse problems; Superresolution; Semi-infinite programming; CONDITIONAL GRADIENT; INVERSE PROBLEMS; SPARSE; RECOVERY;
D O I
10.1007/s10107-020-01530-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze an exchange algorithm for the numerical solution total-variation regularized inverse problems over the space M(Omega) of Radon measures on a subset Omega of R-d. Our main result states that under some regularity conditions, the method eventually converges linearly. Additionally, we prove that continuously optimizing the amplitudes of positions of the target measure will succeed at a linear rate with a good initialization. Finally, we propose to combine the two approaches into an alternating method and discuss the comparative advantages of this approach.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 33 条
[1]  
[Anonymous], 2019, PR MACH LEARN RES
[2]   PARTIALLY FINITE CONVEX-PROGRAMMING .1. QUASI RELATIVE INTERIORS AND DUALITY-THEORY [J].
BORWEIN, JM ;
LEWIS, AS .
MATHEMATICAL PROGRAMMING, 1992, 57 (01) :15-48
[3]   THE ALTERNATING DESCENT CONDITIONAL GRADIENT METHOD FOR SPARSE INVERSE PROBLEMS [J].
Boyd, Nicholas ;
Schiebinger, Geoffrey ;
Recht, Benjamin .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) :616-639
[4]   ON REPRESENTER THEOREMS AND CONVEX REGULARIZATION [J].
Boyer, Claire ;
Chambolle, Antonin ;
De Castro, Yohann ;
Duval, Vincent ;
De Gournay, Frederic ;
Weiss, Pierre .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) :1260-1281
[5]   INVERSE PROBLEMS IN SPACES OF MEASURES [J].
Bredies, Kristian ;
Pikkarainen, Hanna Katriina .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) :190-218
[6]   Towards a Mathematical Theory of Super- resolution [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) :906-956
[7]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
[8]  
Chizat Lenaic, 2018, Advances in neural information processing systems, P3036
[9]   Exact Solutions to Super Resolution on Semi-Algebraic Domains in Higher Dimensions [J].
De Castro, Yohann ;
Gamboa, F. ;
Henrion, Didier ;
Lasserre, J. -B. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (01) :621-630
[10]   Exact reconstruction using Beurling minimal extrapolation [J].
de Castro, Yohann ;
Gamboa, Fabrice .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) :336-354