Machine learning models of clinically relevant biomarkers for the prediction of stable obstructive coronary artery disease

被引:4
作者
Kim, Juntae [1 ]
Lee, Su Yeon [1 ]
Cha, Byung Hee [2 ]
Lee, Wonseop [2 ]
Ryu, JiWung [1 ]
Chung, Young Hak [1 ]
Kim, Dongmin [1 ]
Lim, Seong-Hoon [1 ]
Kang, Tae Soo [1 ]
Park, Byoung-Eun [1 ]
Lee, Myung-Yong [1 ]
Cho, Sungsoo [3 ]
机构
[1] Dankook Univ, Dankook Univ Hosp, Dept Internal Med, Div Cardiovasc Med,Coll Med, Cheonan si, South Korea
[2] CNAI, Seoul, South Korea
[3] Chung Ang Univ, Gwangmyeong Hosp, Heart & Brain Hosp, Dept Cardiol,Coll Med, Gwangmyeong, South Korea
关键词
machine learning; artificial intelligence; coronary artery disease; stable angina pectoris; personalized medicine; TROPONIN-T; VALIDATION; RISK;
D O I
10.3389/fcvm.2022.933803
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundIn patients with suspected obstructive coronary artery disease (CAD), evaluation using a pre-test probability model is the key element for diagnosis; however, its accuracy is controversial. This study aimed to develop machine learning (ML) models using clinically relevant biomarkers to predict the presence of stable obstructive CAD and to compare ML models with an established pre-test probability of CAD models. MethodsEight machine learning models for prediction of obstructive CAD were trained on a cohort of 1,312 patients [randomly split into the training (80%) and internal validation sets (20%)]. Twelve clinical and blood biomarker features assessed on admission were used to inform the models. We compared the best-performing ML model and established the pre-test probability of CAD (updated Diamond-Forrester and CAD consortium) models. ResultsThe CatBoost algorithm model showed the best performance (area under the receiver operating characteristics, AUROC, 0.796, and 95% confidence interval, CI, 0.740-0.853; Matthews correlation coefficient, MCC, 0.448) compared to the seven other algorithms. The CatBoost algorithm model improved risk prediction compared with the CAD consortium clinical model (AUROC 0.727; 95% CI 0.664-0.789; MCC 0.313). The accuracy of the ML model was 74.6%. Age, sex, hypertension, high-sensitivity cardiac troponin T, hemoglobin A1c, triglyceride, and high-density lipoprotein cholesterol levels contributed most to obstructive CAD prediction. ConclusionThe ML models using clinically relevant biomarkers provided high accuracy for stable obstructive CAD prediction. In real-world practice, employing such an approach could improve discrimination of patients with suspected obstructive CAD and help select appropriate non-invasive testing for ischemia.
引用
收藏
页数:9
相关论文
共 22 条
[11]   A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Meijboom, W. Bob ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Cademartiri, Filippo ;
Maffei, Erica ;
Dewey, Marc ;
Zimmermann, Elke ;
Laule, Michael ;
Pugliese, Francesca ;
Barbagallo, Rossella ;
Sinitsyn, Valentin ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
Schuijf, Joanne D. ;
Bax, Jeroen J. ;
de Graaf, Fleur R. ;
Knuuti, Juhani ;
Kajander, Sami ;
van Mieghem, Carlos A. G. ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Gopalan, Deepa ;
Feuchtner, Gudrun ;
Friedrich, Guy ;
Krestin, Gabriel P. ;
Hunink, M. G. Myriam .
EUROPEAN HEART JOURNAL, 2011, 32 (11) :1316-1330
[12]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21
[13]   Machine Learning for Pretest Probability of Obstructive Coronary Stenosis in Symptomatic Patients [J].
Hou, Zhi-hui ;
Lu, Bin ;
Li, Zhen-nan ;
An, Yun-qiang ;
Gao, Yang ;
Yin, Wei-hua ;
Liang, Sen ;
Zhang, Rong-guo .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (12) :2584-2586
[14]  
Ke GL, 2017, ADV NEUR IN, V30
[15]   2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) [J].
Knuuti, Juhani ;
Wijns, William ;
Saraste, Antti ;
Capodanno, Davide ;
Barbato, Emanuele ;
Funck-Brentano, Christian ;
Prescott, Eva ;
Storey, Robert F. ;
Deaton, Christi ;
Cuisset, Thomas ;
Agewall, Stefan ;
Dickstein, Kenneth ;
Edvardsen, Thor ;
Escaned, Javier ;
Gersh, Bernard J. ;
Svitil, Pavel ;
Gilard, Martine ;
Hasdai, David ;
Hatala, Robert ;
Mahfoud, Felix ;
Masip, Josep ;
Muneretto, Claudio ;
Valgimigli, Marco ;
Achenbach, Stephan ;
Bax, Jeroen J. ;
Neumann, Franz-Josef ;
Sechtem, Udo ;
Banning, Adrian Paul ;
Bonaros, Nikolaos ;
Bueno, Hector ;
Bugiardini, Raffaele ;
Chieffo, Alaide ;
Crea, Filippo ;
Czerny, Martin ;
Delgado, Victoria ;
Dendale, Paul .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :407-477
[16]  
Lundberg SM, 2017, ADV NEUR IN, V30
[17]  
Murtagh Fionn, 1991, NEUROCOMPUTING, V2, P183, DOI [DOI 10.1016/0925-2312(91)90023-5, 10.1016/0925-2312(91)90023-5]
[18]   High-sensitivity Troponin T in relation to coronary plaque characteristics in patients with stable coronary artery disease; results of the ATHEROREMO-IVUS study [J].
Oemrawsingh, Rohit M. ;
Cheng, Jin M. ;
Garcia-Garcia, Hector M. ;
Kardys, Isabella ;
van Schaik, Ron H. N. ;
Regar, Evelyn ;
van Geuns, Robert-Jan ;
Serruys, Patrick W. ;
Boersma, Eric ;
Akkerhuis, K. Martijn .
ATHEROSCLEROSIS, 2016, 247 :135-141
[19]  
Prokhorenkova L, 2018, ADV NEUR IN, V31
[20]   Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina [J].
Reeh, Jacob ;
Therming, Christina Bachmann ;
Heitmann, Merete ;
Hojberg, Soren ;
Sorum, Charlotte ;
Bech, Jan ;
Husum, Dorte ;
Dominguez, Helena ;
Sehestedt, Thomas ;
Hermann, Thomas ;
Hansen, Kim Wadt ;
Simonsen, Lene ;
Galatius, Soren ;
Prescott, Eva .
EUROPEAN HEART JOURNAL, 2019, 40 (18) :1426-1435