Machine learning models of clinically relevant biomarkers for the prediction of stable obstructive coronary artery disease

被引:4
作者
Kim, Juntae [1 ]
Lee, Su Yeon [1 ]
Cha, Byung Hee [2 ]
Lee, Wonseop [2 ]
Ryu, JiWung [1 ]
Chung, Young Hak [1 ]
Kim, Dongmin [1 ]
Lim, Seong-Hoon [1 ]
Kang, Tae Soo [1 ]
Park, Byoung-Eun [1 ]
Lee, Myung-Yong [1 ]
Cho, Sungsoo [3 ]
机构
[1] Dankook Univ, Dankook Univ Hosp, Dept Internal Med, Div Cardiovasc Med,Coll Med, Cheonan si, South Korea
[2] CNAI, Seoul, South Korea
[3] Chung Ang Univ, Gwangmyeong Hosp, Heart & Brain Hosp, Dept Cardiol,Coll Med, Gwangmyeong, South Korea
关键词
machine learning; artificial intelligence; coronary artery disease; stable angina pectoris; personalized medicine; TROPONIN-T; VALIDATION; RISK;
D O I
10.3389/fcvm.2022.933803
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundIn patients with suspected obstructive coronary artery disease (CAD), evaluation using a pre-test probability model is the key element for diagnosis; however, its accuracy is controversial. This study aimed to develop machine learning (ML) models using clinically relevant biomarkers to predict the presence of stable obstructive CAD and to compare ML models with an established pre-test probability of CAD models. MethodsEight machine learning models for prediction of obstructive CAD were trained on a cohort of 1,312 patients [randomly split into the training (80%) and internal validation sets (20%)]. Twelve clinical and blood biomarker features assessed on admission were used to inform the models. We compared the best-performing ML model and established the pre-test probability of CAD (updated Diamond-Forrester and CAD consortium) models. ResultsThe CatBoost algorithm model showed the best performance (area under the receiver operating characteristics, AUROC, 0.796, and 95% confidence interval, CI, 0.740-0.853; Matthews correlation coefficient, MCC, 0.448) compared to the seven other algorithms. The CatBoost algorithm model improved risk prediction compared with the CAD consortium clinical model (AUROC 0.727; 95% CI 0.664-0.789; MCC 0.313). The accuracy of the ML model was 74.6%. Age, sex, hypertension, high-sensitivity cardiac troponin T, hemoglobin A1c, triglyceride, and high-density lipoprotein cholesterol levels contributed most to obstructive CAD prediction. ConclusionThe ML models using clinically relevant biomarkers provided high accuracy for stable obstructive CAD prediction. In real-world practice, employing such an approach could improve discrimination of patients with suspected obstructive CAD and help select appropriate non-invasive testing for ischemia.
引用
收藏
页数:9
相关论文
共 22 条
[1]   A Comparison of the Updated Diamond-Forrester, CAD Consortium, and CONFIRM History-Based Risk Scores for Predicting Obstructive Coronary Artery Disease in Patients With Stable Chest Pain The SCOT-HEART Coronary CTA Cohort [J].
Baskaran, Lohendran ;
Danad, Ibrahim ;
Gransar, Heidi ;
Hartaigh, Briain O. ;
Schulman-Marcus, Joshua ;
Lin, Fay Y. ;
Pena, Jessica M. ;
Hunter, Amanda ;
Newby, David E. ;
Adamson, Philip D. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) :1392-1400
[2]   Validation of European Society of Cardiology pre-test probabilities for obstructive coronary artery disease in suspected stable angina [J].
Bing, Rong ;
Singh, Trisha ;
Dweck, Marc R. ;
Mills, Nicholas L. ;
Williams, Michelle C. ;
Adamson, Philip D. ;
Newby, David E. .
EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2020, 6 (04) :293-300
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation [J].
Chicco, Davide ;
Jurman, Giuseppe .
BMC GENOMICS, 2020, 21 (01)
[5]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[6]  
Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
[7]   Association of Troponin T Detected With a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population [J].
de Lemos, James A. ;
Drazner, Mark H. ;
Omland, Torbjorn ;
Ayers, Colby R. ;
Khera, Amit ;
Rohatgi, Anand ;
Hashim, Ibrahim ;
Berry, Jarett D. ;
Das, Sandeep R. ;
Morrow, David A. ;
McGuire, Darren K. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2010, 304 (22) :2503-2512
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[10]   Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Hunink, M. G. Myriam ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Krestin, Gabriel P. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Knuuti, Juhani ;
Kajander, Sami ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Cademartiri, Filippo ;
Maffei, Erica ;
Martini, Chiara ;
Seitun, Sara ;
Aldrovandi, Annachiara ;
Wildermuth, Simon ;
Stinn, Bjoern ;
Fornaro, Juergen ;
Feuchtner, Gudrun ;
De Zordo, Tobias ;
Auer, Thomas ;
Plank, Fabian ;
Friedrich, Guy ;
Pugliese, Francesca ;
Petersen, Steffen E. ;
Davies, L. Ceri ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
van Mieghem, Carlos A. G. ;
van Driessche, Luc ;
Sinitsyn, Valentin ;
Gopalan, Deepa ;
Nikolaou, Konstantin ;
Bamberg, Fabian ;
Cury, Ricardo C. ;
Battle, Juan ;
Maurovich-Horvat, Pal ;
Bartykowszki, Andrea ;
Merkely, Bela ;
Becker, David ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Dewey, Marc .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 344