Presynaptic inhibition of spinal sensory feedback ensures smooth movement

被引:183
作者
Fink, Andrew J. P. [1 ,2 ,3 ]
Croce, Katherine R. [1 ,2 ,3 ]
Huang, Z. Josh [4 ]
Abbott, L. F. [5 ,6 ]
Jessell, Thomas M. [1 ,2 ,3 ]
Azim, Eiman [1 ,2 ,3 ]
机构
[1] Columbia Univ, Howard Hughes Med Inst, Mortimer B Zuckerman Mind Brain Behav Inst, Kavli Inst Brain Sci,Dept Neurosci, New York, NY 10032 USA
[2] Columbia Univ, Howard Hughes Med Inst, Mortimer B Zuckerman Mind Brain Behav Inst, Kavli Inst Brain Sci,Dept Biochem, New York, NY 10032 USA
[3] Columbia Univ, Howard Hughes Med Inst, Mortimer B Zuckerman Mind Brain Behav Inst, Kavli Inst Brain Sci,Dept Mol Biophys, New York, NY 10032 USA
[4] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[5] Columbia Univ, Ctr Theoret Neurosci, Dept Physiol, New York, NY 10032 USA
[6] Columbia Univ, Ctr Theoret Neurosci, Dept Neurosci, New York, NY 10032 USA
关键词
GAMMA-AMINOBUTYRIC-ACID; CORD; NEURONS; AFFERENT; CELLS; MUSCLE; CORTEX; DEPOLARIZATION; TRANSMISSION; CIRCUITS;
D O I
10.1038/nature13276
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo-axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory-motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2-expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement.
引用
收藏
页码:43 / +
页数:20
相关论文
共 57 条
[31]   CHANGES IN PRESYNAPTIC INHIBITION OF IA FIBERS AT THE ONSET OF VOLUNTARY CONTRACTION IN MAN [J].
HULTBORN, H ;
MEUNIER, S ;
PIERROTDESEILLIGNY, E ;
SHINDO, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 389 :757-772
[32]   Corelease of two fast neurotransmitters at a central synapse [J].
Jonas, P ;
Bischofberger, J ;
Sandkühler, J .
SCIENCE, 1998, 281 (5375) :419-424
[33]   MECHANISM OF FACILITATION + DEPRESSION OF EXCITATORY SYNAPTIC POTENTIAL IN SPINAL MOTONEURONES [J].
KUNO, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1964, 175 (01) :100-&
[34]   MATCHING CODING, CIRCUITS, CELLS, AND MOLECULES TO SIGNALS - GENERAL-PRINCIPLES OF RETINAL DESIGN IN THE FLYS EYE [J].
LAUGHLIN, SB .
PROGRESS IN RETINAL AND EYE RESEARCH, 1994, 13 (01) :165-196
[35]   Short-term synaptic depression in the neonatal mouse spinal cord: Effects of calcium and temperature [J].
Li, Y ;
Burke, RE .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (05) :2047-2062
[36]   INFERIOR OLIVE OSCILLATION AS THE TEMPORAL BASIS FOR MOTRICITY AND OSCILLATORY RESET AS THE BASIS FOR MOTOR ERROR CORRECTION [J].
Llinas, R. R. .
NEUROSCIENCE, 2009, 162 (03) :797-804
[37]   Local control of information flow in segmental and ascending collaterals of single afferents [J].
Lomelí, J ;
Quevedo, J ;
Linares, P ;
Rudomin, P .
NATURE, 1998, 395 (6702) :600-604
[38]  
LUNDBERG A., 1964, PROGR BRAIN RES, V12, P197, DOI 10.1016/S0079-6123(08)60624-X
[39]   THE REGULATION OF PRESYNAPTIC INHIBITION DURING COCONTRACTION OF ANTAGONISTIC MUSCLES IN MAN [J].
NIELSEN, J ;
KAGAMIHARA, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 464 :575-593
[40]   Quantifying proprioception [J].
Prochazka, A .
PERIPHERAL AND SPINAL MECHANISMS IN THE NEURAL CONTROL OF MOVEMENT, 1999, 123 :133-142